

Faculty of Pharmacy

Developing new microemulsions containing high molecular weight heparin sodium for transdermal application

By

Yousuf Ali Yousif

Supervisor Dr Jamal Alyoussef Alkrad

This thesis was submitted in partial fulfillment of the requirement for the Master's degree in the pharmaceutical sciences

December, 2020

جامعة الإسراء نموذج التفويض

أنا يوسف علي يوسف ، أفوض جامعة الإسراء بتزويد نسخ من رسالتي / أطروحتي للمكتبات أو المؤسسات أو الهينات أو الأشخاص عند طلبهم حسب التعليمات النافذة في

التاريخ:2020/12/27

Isra University

Authorization Form

I Yousuf Ali Yousif, authorize Isra University to supply copies of my Thesis/ Dissertation to libraries or establishments or individuals on request, according to Isra University regulations.

Signature:

Date: 27/12/2020

COMMITTEE DECISION

This thesis (**Developing new microemulsions containing high molecular weight heparin sodium for transdermal application**) was successfully defend and approved on.....

Examination committee:

Signature

Enam h

Dr. Jamal Alyoussef Alkrad (supervisor)

Pharmaceutical technology and Biopharmacy

Dr. Qais Jarrar

Pharmacology and toxicology

Prof. Enam Ayoub Khalil

Pharmaceutical technology

Dedication

- To the last final prophet and messenger of almighty Allah our master, leader and teacher Muhammad bin Abdullah (peace and blessing be upon him).
- To my father who always encouraged me to seek knowledge.
- My precious diamond and the light of my life, to my dear mother, thanks to her prayers asking almighty God helping me to reach this level of education.
- To my sisters, who created the motives inside me to continue my study and give me the power in this life.
- To everyone who helps, teach me and take my hand to the right path in seeking knowledge.

Acknowledgments

First of all praise be to Allah, Most Gracious, Most Merciful, for his unlimited support and favors.

I would like to express my thanks to **Dr. Jamal Alyoussef Alkrad**, my supervisor and head of the Department of Pharmaceutics, for his wise advices, patience and encouragement throughout all stages of my study.

I am so thankful to College of Pharmacy, University of Isra for offering the opportunity to continue my graduate study.

I would like also to express my grateful thanks to **my family**, for their patience, help, support and love.

Finally, I would like to extend my thanks to all others who helped me to finish this work.

Contents	Page	
Dedication	IV	
Acknowledgments	V	
List of contents		
List of figures	VIII	
List of tables	Х	
List of abbreviations	XI	
Abstract	XII	
Chapter One: Introduction	1	
1.1 Hemostasis	2	
1.2 Heparin	3	
1.2.1 Heparin synthesis and extraction	3	
1.2.2 Heparin structure	4	
1.2.3 Heparin mechanism of action of High molecular heparin (Unfracnated	5	
heparin UFH) and Low molecalr weight heparin (LMWHs).		
1.3 Skin anatomy and Transdermal absorption	7	
1.4 Transdermal of heparin	8	
1.5 Microemulsions	10	
1.6 Objectives	13	
Chapter 2	14	
2. Materials, instruments and methods	15	
2.1. Materials	15	
2.2. Instruments and methods	15	
2.2.1Materials, instruments and methods	15	
2.2.2Pseudo-ternary phase diagrams of microemulsionlsion systems	16	
2.2.3 Measurements of Fourier Transform Infrared (FTIR) spectra		
2.2.4 Viscosity measurements	17	
2.2.5. Droplet size measurement	17	
2.2.6 Preparing rat skin	17	
2.2.7 Studying of transdermal of heparin		
penetration using franz cell		
2.2.8 Heparin analyzing using high pressure chromatography (HPLC) method	19	
2.2.9 Efficacy of Heparin in rats	19	
2.2.10. Pharmacokinetic and statistical analysis	20	
Chapter 3	22	
3. Results	23	
3.1 HPLC method and calibration curve		
3.2Three phase diagrams		
3.3 Assessing of heparin encapsulation using transform infrared spectroscopy		
(FTIR)		
3.4 Microemulsions developing and characterizing	27	
3.4.1. Heparin loaded microemulsion 1 (Mehp1)	27	
3.4.1.1 Rheology	28	
3.4.1.2 zeta-sizer	28	

List of Contents

3.4.2 Heparin loaded microemulsion 2 (MEhp2)	29
3.4.2.1 Rheology	29
3.4.2.2 Zeta-sizer	30
3.4.3 Heparin loaded microemulsion 3 (MEhp3)	31
3.4.3.1 Rheology	31
3.4.3.2 Droplet size	32
3.4.4 Heparin loaded microemulsion 4 (MEhp4)	33
3.4.4.1 The rheology	33
3.4.4.2 droplet size measurement	33
3.3.5 Microemulsion 5 (MEhp5)	34
3.4.5.1 Rheological property of MEhp5	34
3.4.5.2 Droplets size measurement	35
3.5 Heparin diffusion across rat epidermis using Franz diffusion cell	36
3.6 The Oral and transdermal efficacy of heparin loaded MEs.	38
Chapter 4	
4. Discussion	41
5. Conclusion	43
6. References	44
7. Appendix	51

List	of	Figures
------	----	---------

Figure No.	Figure Title	Page
1	Hemostasis pathways and effect of Anti-thrombin on it	2
2	The main disaccharide repeated units of heparin. 3	
3	Anatomy of the skin 7	
4	Microemulsion structure: A: microemulsion (O/W) and B: reversed micelles or microemulsion (W/O)	11
5	Chromatograms of heparin using HPLC Method (10% methanol, flow rate of 0.35 ml/min, wave length of 202 nm)	24
6	The calibration curve of Heparin for concentrations between 0.1 -10 mg/ml using Origen program	24
7	The three phase diagrams for microemulsions (MEs) composed of IPM, mixture of water and DMSO with ratio of 1:0.5 and a mixture of Tween 80: span 20 (3:2) without Hp(A), with 50 mg Hp (B).	25
8	Fourier transform infrared (FTIR) spectra of heparin, free microemulsion of heparin and microemulsion with heparin.	26
9	The rheogram of MEhp1: The viscosity against and the shear stress against shear rate.	28
10	Droplet size distribution of MEhp1 using zeta-sizer	29
11	The rheogram of MEhp2: The viscosity against and the shear stress against	31
12	Droplet size distribution of MEhp2 using zeta-sizer	31
13	The rheogram of MEhp3: The viscosity against and the shear stress against shear rate	33
14	Droplet size distribution of MEhp3 using zeta-sizer	34
15	The rheogram of MEhp4: The viscosity against and the shear stress against shear rate.	35
16	Droplet size distribution of MEhp4 using zeta-sizer	36
17	The rheogram of MEhp4: The viscosity against and the shear stress against shear rate.	37
18	Droplet size distribution of MEhp5 using zeta-sizer	38
19	Chromatograms of heparin sodium using High pressure liquid chromatography (HPLC) for samples collected from Franz diffusion cells (10 μ l injection volume, C8 (4.6*250 mm) column system, mobile phase of phosphate buffer:methanol with ratio of 90:10, flow rate of 0.35 ml/min and detected at wave length of 204 nm).	40

20	Cumulative Penetrated sodium heparin (Hp) amounts per cm2 from deferent micromulsions against the time per hour (h).	40
21	The response of heparin time curves for different routes of application	42
22	The viscosity against the shear rate of different MEs	47

List of Tables

Table No.	Table Title	Page
1	The Composition of developed containing heparin microemulsions	16
2	The measured flux, lag time (Tlag) and permeability constant of Hp using different developed microemulsions (MEs) through rat's skin.	44
3	Areas under the curve of different response time curve of different route of application	46

List of Abbreviations

Abbreviation	Meaning
AUC	Area under the curve
aPTT	Activated partial thromboplastin time
%	Percentage
°C	Degree Celsius
DMSO	Dimethyl sulfoxide
Eq	Equation
FTIR	Fourier transform infrared spectroscopy
GIT	Gastrointestinal tract
GAG	Glycosaminoglycan
g	Gram
HPLC	High performance liquid chromatography
h	Hour
Нр	Heparin
НМН	High Molecular weight Heparin
iv	Intravenous
IPM	Isopropyl myristate
LMH	Low Molecular weight Heparin
mL	Milliliter
μL	Microliter
mg	Milligram
μg	Microgram
min	Minute
ME	Microemulsion
MWt	Molecular weight
nm	Nanometer
sc	Subcutaneous
UFH	Un-fractionated Heparin
UV	Ultraviolet

Developing new microemulsions containing high molecular weight heparin sodium for transdermal application

By

Yousuf Ali Yousif

Supervisor

Dr Jamal Alyoussef Alkrad

Abstract

Heparin is an anticoagulant which administrated usually either by Intravenous or Subcutaneous injection. This study aimed to formulate microemulsions containing heparin using nonionic surfactants for transdermal application. Five microemulsions were developed and characterized for their rheological properties and droplets size. The in vitro permeation of heparin was measured using Franz diffusion cell. Hence, an HPLC-method was developed to study the permeability through the skin. Furthermore the efficacy of one developed heparin was orally and transdermally tested using rats model in comparison to subcutaneous administration. The rheograms and droplets size measurements evidenced that the developed drug delivery systems are microemulsions. Furthermore, the permeation of heparin using MEs could be proved using Franz diffusion cells. Moreover, the in vivo results could reflect the effect of absorbed heparin through the skin as well as after oral administration. Finally the novel MEs containing heparin can be promised carriers for noninvasive application of heparin.

Chapter 1 Introduction