Faculty of Engineering

Evaluation and Improvement of Three-Leg Intersections:

A Case Study in Amman City

Prepared by:

Ali Abdulkhaleq Hussein

Supervised by:

Prof. Dr. Basim K. Jrew

A Thesis

Submitted to Faculty of Engineering as a Partial Fulfillment of the
Requirement for Master Degree in Engineering Project Management

August 2020
This Thesis (Evaluation and Improvement of Three-Leg Intersections: A Case Study in Amman City) was successfully defended and approved on 11/08/2020.

Examination Committee

Prof. Dr. Basim K. Jrew (Supervisor)
Isra University

Dr. Moawiah A. Alnsour (Member)
Isra University

Prof. Dr. Khair Said Jadaan (Member)
University of Jordan

Signature

[Signature]

27/08/2020

[Signature]

23/08/2020
AUTHORIZATION FORM

I am, Ali Abdulkhaleq Hussein, authorize Isra University to supply copies of my thesis to libraries or establishments or individuals upon request, in accordance with Isra University’s regulations.

Signature:

Date: 28/08/2020
DEDICATION

This humble effort is dedicated to my esteemed parents for their love, care for me, and sacrifices for my education and preparing me for my future.

To my wife, who was a continuous source of support and encouragement during the challenges of this study.

To all my dear brothers and sisters.

To the soul of my dear uncle, who wished me success always and forever.

To everyone who wishes good to me.
ACKNOWLEDGEMENT

First and foremost, thanks and praises to THE ALMIGHTY GOD the most merciful, for providing me the blessings throughout my research work to complete this work successfully. Without his grace, this work could not become a reality.

I would like to express my heartiest and deep gratitude to my supervisor Prof. Dr. Basim K. Jrew, for his scientific guidance, endless support, and encouragement to me. He has taught me the methodology to carry out this study and to present the study works as clearly as possible.

I would like to extend my heartfelt thanks to Prof. Dr. Khair S. Jadaan / University of Jordan, Associate Prof. Dr. Majed Msallam / Al-Balqa Applied University, Eng. Luma Al-Akidy / Traffic Control Unit / Greater Amman Municipality, Eng. Alaa Atieh, Eng. Abdallah Abu Anz, and Eng. Ahmed Hirzallah for their cooperation and generous help.

Last but not least, a great thanks to everyone who helped me, even a little, in the task of completing this study.
Table of Contents

Committee Decision .. i
Authorization Form .. ii
Dedication ... iii
Acknowledgement ... iv
List of Figures .. ix
List of Tables ... xii
List of Abbreviations .. xiv
Abstract ... xv

1 Chapter One: Introduction ... 1
 1.1 Background ... 1
 1.1.1 Transportation System ... 2
 1.1.2 Transportation System Modes .. 2
 1.1.3 Transportation System Management (TSM) 3
 1.1.4 Transportation Demand Management (TDM) 3
 1.1.5 Traffic Management System (TMS) ... 4
 1.1.6 Active Traffic Management (ATM) ... 5
 1.2 Study Problem ... 5
 1.3 Study Area ... 6
 1.4 Study Objectives .. 8
 1.5 Study Hypothesis .. 8
 1.6 Study Structure ... 8

2 Chapter Two: Review of Literature ... 10
 2.1 Introduction .. 10
 2.2 Roadway System Elements ... 11
 2.3 Classification of the Roadway System .. 13
 2.3.1 Functional Classification .. 13
 2.3.2 Operational Classification ... 13
 2.3.2.1 Interrupted Flow Facilities .. 14
 2.3.2.2 Interrupted Flow Parameters ... 14
 2.3.2.2.1 Volume, Flow Rate, and Peak Hour Factor 15
 2.4 Intersections ... 16
2.4.1 Classification of At-Grade Intersections ... 16
 2.4.1.1 Functional Classification .. 16
 2.4.1.2 Geometrical Classification ... 17
 2.4.2 Conflict Points at Intersections ... 17
 2.4.3 Signalized Intersection ... 18
 2.4.3.1 Measures of Effectiveness (MOEs) at Signalized Intersection 19
 2.4.3.2 Headway and Saturation Flow at Signalized Intersection 22
 2.4.3.3 Capacity at Signalized Intersection 25
 2.4.3.4 Level of Service at Signalized Intersection 26
 2.4.4 Un-signalized Intersection ... 28
 2.4.4.1 Level of Service at Un-signalized Intersection 30
 2.5 Justifying of Traffic Control Signals .. 31
 2.6 Channelization of At-Grade Intersections .. 33
 2.7 Computer Software .. 35
 2.7.1 Highway Capacity Software (HCS-2010) 35
 2.7.2 Synchro-10 ... 35
 2.7.3 PTV VISSIM-11 ... 36
 2.8 Previous Studies ... 36

3 Chapter Three: Methodology, Data Collection, and Evaluation 47
 3.1 Study Methodology ... 47
 3.2 Data Collection .. 50
 3.3 Evaluation of the Existing Traffic and Geometric Conditions 63
 3.3.1 First Intersection .. 63
 3.3.2 Second Intersection .. 66
 3.3.3 Third Intersection ... 67
 3.3.4 Fourth Intersection .. 68
 3.3.5 Fifth Intersection ... 69
 3.3.6 Sixth Intersection ... 70
 3.3.7 Seventh Intersection .. 71
 3.3.8 Eighth Intersection ... 77
 3.3.9 Ninth Intersection ... 79
 3.3.10 Tenth Intersection .. 81
 3.3.10.1 Manual Evaluation of the Tenth Intersection (Al-Baraka Mall Int.) .. 83
Appendix-B: Traffic Volume Data for the Selected Signalized Intersections B
Appendix-C: Inputs and Outputs Reports Using HCS-2010 and HCS Warrants Software... C
Appendix-D: Inputs and Outputs Reports Using Synchro-10 and Traffic Signal Warrants-10 Software.. D
Appendix-E: Inputs and Outputs Reports Using VISSIM-11 Software............... E
LIST OF FIGURES

Figure 1.1: Transportation System Modes (Ram, 2017) .. 2
Figure 1.2: Project Management Triangle ... 4
Figure 1.3: Study Area (Source: Google Maps, 2020) .. 7
Figure 2.1: Elements of Roadway System (HCM, 2010) ... 11
Figure 2.2: Other Elements of Roadway System (HCM, 2010) 11
Figure 2.3: Conflict Points at Four-Leg Intersection (VDOT, 2019) 18
Figure 2.4: Conflict Points at Three-Leg Intersection (T-intersection) (VDOT, 2019) 18
Figure 2.5: Cycle Length and Delay Relationship (HCM, 2016) 21
Figure 2.6: Acceleration Headways at Signalized Intersection (HCM, 2016) 23
Figure 2.7: Concept of Saturation Flow and Lost Time (HCM, 2016) 23
Figure 2.8: (a)TWSC, (b)AWSC, and (c)Roundabout YIELD sign control (Elefteriadou, 2014) ... 29
Figure 2.9: Three-Leg Intersection with Stop Sign Control (Elefteriadou, 2014) 29
Figure 2.10: Warrant 3, Peak Hour (MUTCD, 2009) .. 32
Figure 2.11: Warrant 3, Peak Hour (70% Factor) (MUTCD, 2009) 33
Figure 2.12: Three-Leg intersection with Various Layouts (Garber and Hoel, 2015) ... 34
Figure 2.13: (a) Existing Layout, (b) Suggested Triangabout Layout (Chou and Nichols, 2014) ... 42
Figure 3.1: Study Methodology Flow Chart ... 48
Figure 3.2: Ministry of Higher Education Intersection (Google Maps, 2020) 52
Figure 3.3: Flow Directions at Ministry of Higher Education Intersection (Source: GAM) .. 52
Figure 3.4: Flow Directions at Um Al-Fadel Intersection (Source: GAM) 54
Figure 3.5: Flow Directions at Wasfi Al-Tal Intersection (Source: GAM) 55
Figure 3.6: Flow Directions at Abdallah Ghosheh Intersection (Source: GAM) 56
Figure 3.7: Flow Directions at Military Service Intersection (Source: GAM) 57
Figure 3.8: Flow Directions at Al-Makhhaz Al-Aali Intersection (Source: GAM) 58
Figure 3.9: Layout of Khalil Al-Saket Un-signalized Intersection 59
Figure 3.10: Layout of Um Uthaynah Un-signalized Intersection 60
Figure 3.11: Layout of Princess Sumayyah Un-signalized Intersection.............. 61
Figure 3.12: Layout of Al-Baraka Mall Un-signalized Intersection.................. 62
Figure 3.13: Typical Inputs and Outputs of the 1st Intersection Using HCS-2010.... 64
Figure 3.14: Typical Inputs and Outputs of the 1st Intersection Using Synchro-10..... 65
Figure 3.15: Typical Report of Inputs and Outputs for the 7th Intersection Using HCS-2010.. 73
Figure 3.16: Typical Report for Justification of Warrant 3, Peak Hour Volume at the 7th Intersection Using HCS Warrant-2010............................... 74
Figure 3.17: Typical Report of Inputs and Outputs for the 7th Intersection Using Synchro-10.. 75
Figure 3.18: Typical Report for Justification of Warrant 3, Peak Hour Volume at the 7th Intersection Using Synchro Traffic Signal Warrant-10.............. 76
Figure 3.19: Traffic Signal Justification Curve at the 8th Intersection Using Synchro warrant-10... 78
Figure 3.20: Traffic Signal Justification Curve at the 9th Intersection Using Synchro Warrant-10... 80
Figure 3.21: Traffic Signal Justification Curve at the 10th Intersection Using Synchro Warrant-10... 82
Figure 3.22: Movements Pattern at TWSC Intersection (HCM, 2010).................. 84
Figure 4.1: (a) Existing Layout, (b) Suggested CGT-Intersection Layout............... 93
Figure 4.2: Analysis and Simulation of the 1st Intersection’s Improvement Using VISSIM-11... 95
Figure 4.3: (a) Suggested Layout, Year-2019, (b) Suggested Layout, Year-2024..... 110
Figure 4.4: Suggested Layout for the 3rd Intersection (No Scale)....................... 113
Figure 4.5: Traffic Signal Justification for the 10th Intersection in the Short-Term Period (Year, 2024) Using Synchro Warrant-10 Software.................... 122
Figure 4.6: Comparison Bar Chart for the Delays at Signalized Intersections (1st through 6th) for the Existing and Short-Term Periods................................. 128
Figure 4.7: Comparison Bar Chart for the Fuel Consumption at Signalized Intersections (1st through 6th) for the Existing and Short-Term Periods... 129
Figure 4.8: Comparison Bar Chart of the Minor Approach Delay at Un-signalized Intersections (7th through 10th) for the Existing and Short-Term Periods.. 129
Figure 4.9: Management Flow Diagram for the Signalized Intersections (Evaluation and Improvements in the Existing-Term, Year-2019)........... 130
Figure 4.10: Management Flow Diagram for the Signalized Intersections
Improvements in the Existing-Term (2019) and Short-Term (2024) 131

Figure 4.11: Management Flow Diagram for the Unsignalized Intersections
(Evaluation and Improvements in the Existing-Term, Year-2019) 132

Figure 4.12: Management Flow Diagram for the Unsignalized Intersections
Improvements in the Existing-Term (2019) and Short-Term (2024) 133
LIST OF TABLES

Table 2.1: Level of Service and Corresponding Delays for Signalized Intersection (HCM,2010) ... 27

Table 2.2: Level of Service and Corresponding Delays for Unsignalized Intersection (HCM,2010) .. 30

Table 3.1: Locations, and Control Types of the Selected Intersections 49

Table 3.2: Traffic Flow Data in the 1st Intersection at Each Approach 53

Table 3.3: Evaluation of the 1st Intersection Using HCS-2010 and Synchro-10 63

Table 3.4: Evaluation of the 2nd Intersection Using HCS-2010 and Synchro-10 66

Table 3.5: Evaluation of the 3rd Intersection Using HCS-2010 and Synchro-10 67

Table 3.6: Evaluation of the 4th Intersection Using HCS-2010 and Synchro-10 68

Table 3.7: Evaluation of the 5th Intersection Using HCS-2010 and Synchro-10 69

Table 3.8: Evaluation of the 6th Intersection Using HCS-2010 and Synchro-10 70

Table 3.9: Traffic Volume Data in the 7th Intersection at Each Approach 71

Table 3.10: Evaluation of the 7th Intersection Using HCS-2010 and Synchro-10 72

Table 3.11: Traffic Volume Data in the 8th Intersection at Each Approach 77

Table 3.12: Evaluation of the 8th Intersection Using HCS-2010 and Synchro-10 78

Table 3.13: Traffic Volume Data in the 9th Intersection at Each Approach 79

Table 3.14: Evaluation of the 9th Intersection Using HCS-2010 and Synchro-10 80

Table 3.15: Traffic Volume Data in the 10th Intersection at Each Approach 81

Table 3.16: Evaluation of the 10th Intersection Using HCS-2010 and Synchro-10 82

Table 3.17: Calculation of the Flow Rates in the 10th Intersection 83

Table 3.18: Evaluation Results Using HCS-2010, Synchro-10, and Manual Calculation ... 90

Table 4.1: Improvement of the 1st Intersection, Year 2019) Using Synchro-10 and HCS-2010 .. 92

Table 4.2: Maximum Approaches Delay Calculation According to VISSIM-11 Outputs ... 94

Table 4.3: Improvement of the 1st Intersection Using Synchro-10 and VISSIM-11 94

Table 4.4: Results Comparison Between the Existing Evaluation and the Improvement at the 1st Intersection .. 96
Table 4.5: Improvement of the 2nd Intersection (Year, 2019) Using HCS-2010 and Synchro-10
Table 4.6: Improvement of the 3rd Intersection (Year, 2019) Using HCS-2010 and Synchro-10
Table 4.7: Improvement of the 4th Intersection (Year, 2019) Using HCS-2010 and Synchro-10
Table 4.8: Improvement of the 5th Intersection (Year, 2019) Using HCS-2010 and Synchro-10
Table 4.9: Improvement of the 6th Intersection (Year, 2019) Using HCS-2010 and Synchro-10
Table 4.10: Designation of the Traffic Signal Cycle Time for the 7th Intersection at the Existing-Term Period Using Synchro-10 Software
Table 4.11: Comparison of HCS-2010, Synchro-10, VISSIM-11, and Manual Calculation Results for the 10th Intersection Analysis
Table 4.12: Predicted Traffic Volumes for the Short-Term Period at the 1st Intersection
Table 4.13: Improvements Comparison at the 1st Intersection in the Existing and Short-Term Periods Using Synchro-10 and VISSIM-11
Table 4.14: Improvements Comparison at the 2nd Intersection in the Existing and Short-Term Periods Using HCS-2010 and Synchro-10
Table 4.15: Improvement of the 3rd Intersection at the Short-Term Period Using HCS-2010 and Synchro-10
Table 4.16: Improvements Comparison at the 4th Intersection in the Existing and Short-Term Periods Using HCS-2010 and Synchro-10
Table 4.17: Improvements Comparison at the 5th Intersection in the Existing and Short-Term Periods Using HCS-2010 and Synchro-10
Table 4.18: Improvements Comparison at the 6th Intersection in the Existing and Short-Term Periods Using HCS-2010 and Synchro-10
Table 4.19: Designation of the Traffic Signal Cycle Time for the 7th Intersection in the Short-Term Period Using Synchro-10 Software
Table 4.20: The Predicted Short-Term Traffic Volumes at the 10th Intersection (Year, 2024)
LIST OF ABBREVIATIONS

- ATM Active Traffic Management
- AWSC All-Way Stop Control
- BRT Bus Rapid Transit
- EB Eastbound
- GAM Greater Amman Municipality
- HCM Highway Capacity Manual
- HCS Highway Capacity Software
- LOS Level of Service
- MOEs Measures of Effectiveness
- MUTCD Manual on Uniform Traffic Control Devices
- NB Northbound
- PHF Peak Hour Factor
- PHV Peak Hour Volume
- SB Southbound
- TDM Transportation Demand Management
- TSM Transportation System Management
- TWSC Two-Way Stop Control
- V/C Volume to Capacity ratio (Degree of Saturation)
- VMS Variable Message Sign
- WB Westbound
Evaluation and Improvement of Three-Leg Intersections: A Case Study in Amman City

Prepared by: Ali Abdulkhaletq Hussein
Supervised by: Prof. Dr. Basim K. Jrew

ABSTRACT

The rise in car ownership in the last decades in Jordan caused high traffic demand in most of the urban roadway network in Amman City, especially in the peak periods. The growth in traffic demand results in congestion on the urban network, high delay, low Level of Service (LOS), and more fuel consumption and air pollution. Intersections are considered as the most critical elements in the urban roadway network, therefore, the evaluation of intersections within the network helps the decision-makers to improve the traffic operation performance, in short, medium, and long-term periods of time. Based on these facts, this study involves evaluating and improving six 3-leg signalized intersections and four 3-leg unsignalized intersections at different locations in Amman City using HCS-2010 and Synchro-10 computer software and validated by VISSIM-11 simulation tool and manual calculation. The evaluation and improvement for each intersection are conducted for the existing and short-term traffic conditions (Year 2019 and Year 2024, respectively). The results of the evaluation revealed that all intersections operate at LOS-E or breakdown condition (LOS-F) during peak hour period. Many low-cost solutions such as prohibiting on-street parking, prohibiting U-turn, adding additional lanes for minor-street and major-street, redirection of flow, and optimization of the cycle length were suggested on the existing and short term period assuming growth rate of 5.5% combined with strict law enforcement. The output results of the used software showed significant improvements such as a reduction in delay, number of stopped vehicles, and fuel consumption. The operational performance was also improved to LOS-C or LOS-D at all six selected signalized intersections.

For unsignalized intersections, the evaluation process showed that the current left-turn from the minor-street faces high delay and operates with LOS-F. To prioritize traffic movements at these four intersections, the installation of traffic signals was suggested and justified according to warrant 3; Peak Hour Volume only. The results
showed that three intersections are warranted for signalization under the existing conditions while the fourth is warranted for signalization only in the short-term period. Also, the optimum cycle time was selected for each intersection with two operation modes for left-turn from the major street; Protected and Protected-Permitted. Accordingly, the LOS of the minor approach improved to LOS-C or D as well as the LOS of the entire intersection to LOS-C or D.

Finally, flow management diagrams with bar charts were prepared for decision-makers to show and summarize the improvements results in the existing and short-term condition based on the output resulted from HCS-2010 and Synchro-10 software and validated by VISSIM-11 simulation tool.

Further medium- and long-term improvements of the urban road network in Amman require costly infrastructures such as overpass interchanges or underpass tunnels. Therefore, it is recommended to apply transportation demand strategies to reduce travel demand besides applying useful sustainable transportation that is based on the five pillars; public transportation, electrical vehicles or hybrid, carpooling, bicycle, and walking.

Keywords: Three-Leg intersection, Signalized Intersection, Unsignalized Intersection, Synchro Software, VISSIM Software, Traffic Signal Warrants, Project Management, Transportation System Management (TSM).