نموذج التفويض

أنا الحمزة حوشي خلف، أفوض جامعة الإسراء بتزويد نسخ من رسالتي للمكتبات أو المؤسسات أو الهيئات أو الأشخاص عند طلبهم حسب التعليمات النافذة في الجامعة.

التوقيع :

التاريخ : 6/15/06/05

Authorization Form

I Alhamza Hoshi Khalaf, authorize Al Isra University to supply copies of my Thesis to Libraries or establishments or Individuals on request, according to Isra University regulations.

Signature:

Date: 2020/06/15

Preparing Sustained Release Alogliptin Tablets Using Bentonite by Granulation

By Alhamza Hoshi Khalaf

Supervisor Dr Jamal Alyoussef Alkrad

This thesis was submitted in partial fulfillment of the requirement for the Master's degree in the pharmaceutical sciences

Faculty of Pharmacy Isra University

June , 2020

COMMITTEE DECISION

This Thesis (Preparing Sustained Release Alogliptin Tablets Using Bentonite by Granulation) was successfully Defended and Approved on

Examinations Committee

Signature

Dr. Jamal Alyoussef Alkrad (Supervisor)

Associated Professor of Pharmaceutical

Technology and Biopharmacy

Isra University

Dr. Ahmed Aljaberi (External examiner)

Associated Professor of Pharmaceutical Technology and Biopharmacy

Applied Science Private University

Dr. Eman Darweesh Misbah ALZamily

(Internal examiner)

Assistant Professor of Pharmaceutics and Drug

Delivery

Isra University

nin lel

Dedication

To the last final prophet and messenger of almighty Allah our master, leader and teacher Muhammad bin Abdullah (peace and blessing be upon him).

To the memory of my father who always encouraged me to seek knowledge.

- My precious diamond and the light of my life, to my dear mother who became both a father and a mother to me. Thanks to her prayers asking almighty God helping me to reach this level of education.
- To my brothers and sisters, who created the motives inside me to continue my study and give me the power in this life.

To everyone who helps, teach me and take my hand to the right path in seeking knowledge.

Acknowledgments

First of all praise be to Allah, Most Gracious, Most Merciful, for his unlimited support and favors.

I would like to express my thanks to **Dr. Jamal Alyoussef Alkrad**, my supervisor and head of the Department of Pharmaceutics, for his wise advices, patience and encouragement throughout all stages of my study.

I am so thankful to College **of Pharmacy**, **University of Isra** for offering the opportunity to continue my graduate study.

I would like also to express my grateful thanks to **my family**, for their patience, help, support and love.

Finally, I would like to extend my thanks to all others who helped me to finish this work.

Alhamza

Table of Contents

Subject	Page
Committee Decision	ii
Dedication	iii
Acknowledgement	iv
Table of Contents	v
List of Tables	vi
List of figures	viii
List of Abbreviations	ix
Abstract	xi

Chapter One

Introduction

1. Introduction	2	
1.1 Alogliptin	2	
1.2 Modified release drug delivery systems	3	
1.2.1 Drug release by Diffusion	4	
1.2.2 Release of drug by dissolution	5	
1.2.3Release of drugs by osmotic pumping	7	
1.2.4Release of drugs from pH dependent formulations	8	
1.2.5 Release of drugs from pH dependent formulations	8	
1.2.6 Release of drug by altering the density of formulations	8	
1.3 Hydroxypropyl methylcellulose (HPMC)	8	
1.4 Bentonite and previous studies	9	
1.5 Objectives	10	
1.6 Aims of the Study	10	
1.7 Research Questions		
1.8 Hypothesis	10	

Chapter Two

Methodology

2. Materials and instruments				
2.1 Materials 1				
2.2 Methods and instruments				
2.2.1 Granulation and tableting	13			
2.2.3 Differential scanning calorimeter (DSC) measurements	13			
2.2.3 Fourier transform infrared spectroscopy (FTIR) Measurements	13			
2.2.4 X-ray diffraction (XRD) characterization				
2.2.5 Flow ability measurement				
2.2.6 Measuring of the friability				
2.2.7 Hardness measurement	14			
2.2.8 Dissolution Profile	14			
2.2.9 High pressure liquid chromatogram (HPLC) assay	14			
2.2.10 Statistical evaluation	15			

Chapter Three

Results

3. Results	17
3.1 Flow ability of granules	17
3.2 Hardness and friability of the tablets	17
3.3 FTIR-measurements	18
3.4 DSC measurements	20
3.5 HPLC-method	21
3.6 Dissolution rate of aloglpitin from the tablets	22

Chapter Four

Discussion

4. Discussion	26
5.Conclusion	28
References	29

LIST OF TABLES

Table No.	Table Title	Page
1	Composition of formulated tablets	13
2	The estimated flowability by CAR's index and Hausner ratio	17
3	The hardness and friability of prepared tablets	18
4	Some of bands of IR Spectrum aloglpitin and possible related groups	19
5	Calculated correlation coefficients for release data	24

LIST OF Figures

Table		
No.	Table figures	Page
1	Structure of alogliptin benzoate	2
2	Diffusion of the drug through porous inert membrane	5
3	Diffusion of the drug through a matrix	6
4	Dissolution from soluble matrix	7
5	Chemical structure of hydroxypropyl methylcellulose (HPMC), R = H, –CH3 or - (OCH2CHCH3)xOH (Deshmukh et al., 2017)	9
6	FTIR-spectra of each of aloglpitin, hydroxypropyl methyl cellulose (HPMC), Bentonite and prepared granules of previous components	19
7	DSC thermograms of alogliptin, alogliptin and bentonite physical mixture, HPMC and prepared granules of alogliptin with aid of 20% HPMC. Conditions: samples heated from 30 to 210 °C; heating rate:10 °C/min	20
8	XRD patterns of bentonite, bentonite- alogliptin granules and bentonite- alogliptin-HPMC mixture (granules with 20% HPMC)	21
9	Chromatogram of alogliptin using HPLC-method	22
10	Calibration curve of AB using HPLC-method	22
11	Dissolution profile of aloglpitin from 5, 10, 20 and 30% HPMC Bentonite tablet	23
12	Gel structure of alogliptin bentonite tablets 20% HPMC after 24 hrs	26

List of Abbreviations

Abbreviation	Meaning
%	Percentage
°C	Degree Celsius
HPLC	High performance liquid chromatography
Eq	Equation
GIT	Gastrointestinal tract
g	Gram
hr	Hour
mL	Milliliter
μL	Microliter
Mg	Milligram
μg	Microgram
min	Minute
MWt	Molecular weight
nm	Nanometer
UV	Ultraviolet
НРМС	hydroxypropyl methyl cellulose
DPP-4	dipeptidyl peptidase-4
T2DM	typ2debates mellitus
GLP-1	glucagon-like peptide-1
GRAS	general recognize as safe
USGS	The United States Geological Survey
AB	Alogliptin benzoate

В	Bentonite
MCC	microcrystalline cellulose
FTIR	Fourier transform infrared spectroscopy
CI	CAR's index
XRD	X-ray diffraction
HR	Hausner Ratio
HPLC	High pressure liquid chromatogram

Preparing Sustained Release Alogliptin Tablets Using Bentonite by Granulation

By

Alhamza Hoshi Khalaf

Supervisor

Dr Jamal Alyoussef Alkrad

ABSTRACT

This study is designed to evaluate the use of bentonite to develop and optimize sustained release tablets by granulation method. The tablets were prepared using different binders then tested for their pharmcopeal requirements. Also, a HPLC method was developed to assess the release pattern of alogliptin from the tablets. FTIR, DSC and powder-XRD were used to evaluate the compatibility between the drug and bentonite. The results showed that the tablets comply with their compendial requirements and no interaction between the drug and the excipient. Furthermore, the release profile revealed sustained release of aloglepitin from the tablets prepared with aid of hydroxypropyl methyl cellulose (HPMC) as a binder. The data fitting showed that diffusion from the tablets followed Fickian model. However, it could be possible to formulate successfully sustained release tablets of aloglpitin using bentonite as an excipient. The formulated tablets complied with pharmacopeial requirements. The developed tablets using bentonite by granulation are good candidate for further in vivo evaluation.