OPTIMIZATION OF METHOTREXATE NANOCOMPOSITES FORMULATIONS USING FULL FACTORIAL DESIGNS

Prepared by

Anwar Mahmoud Hussein

Supervised by

Dr. Samer Hasan Hussein-Al-Ali

A Thesis

Submitted to Faculty of Pharmacy as a Partial Fulfillment of the Requirements for Master's Degree in Pharmaceutical Sciences

> Faculty of Pharmacy Isra University June, 2020

جامعة الاسراء

نموذج تفويض

أنا انوار محمود حسن حسين، أفوض جامعة الأسراء بتزويد نسخة من رسالتي للمكتبات أو المؤسسات أو الهينات أو

الأشخاص عن طلبها حسب التعليمات النافذة في الجامعة.

التوقيع: 2020 16/2020 التاريخ: 2020 16/20

Isra University

Authorization From

I'm Anwar Mahmoud Hussein, authorize Al-Isra University to supply copies of my Thesis to libraries or establishments or individuals on request, according to Al-Isra University regulations.

Signature: Num

Date: 211612020

COMMITTEE DECISION

This Thesis (Optimization of Methotrexate Nanocomposites Formulations Using Full Factorial Designs) was Successfully Defended and Approved on.....

Examination Committee

Dr. Samer Hasan Hussein-Al-Ali (Supervisor). Associate Professor of Nanosciences. Isra University.

Dr. Jamal Alyoussef Alkrad (Member). Associate Professor of Pharmaceutics. Isra University.

Dr. Dina Abdel-raouf Professor of Pharmaceutics and Pharmaceutical Technology. The University of Jordan.

Signature

Dedication

This project is lovingly dedicated to my sweet **Father and Mother**, whose love, affection, encouragement and whose prays of night and day support me to get such tonor and success. Without their support this research would not have made possible. Many thanks for you to teaching me to believe in God, in myself and in my dreams.

I thank God for having such caring to my parents who are the ray of my passion to science from I was young.

I would like to dedicate and express my endless thanks to **Suleiman** for his full presence and continual support.

Also to all members of my family, **my sister and my brothers**, because their care and support. I would also like to thank small kids, **Zaid and Jad**, because whose leaving my stress for long periods.

Acknowledgement

First and foremost, I would like to express my gratitude to **Dr. Samer Hussein-Al-Ali**, for awarding me the opportunity to do this project under his supervision and also for his valuable advice, teaching me some research skills, unlimited support and encouragement throughout this project work.

I am also would like to thank all my doctors whom I have learnt a lot from throughout the course of my studies.

Special thanks for **Miss Esraa Al-nsour**, **Miss FidaOdeh**and for **Eng. MajdolenShawish**for their helps, support and the time I spent with them.

OPTIMIZATION OF METHOTREXATE NANOCOMPOSITES FORMULATIONS USING FULL FACTORIAL DESIGNS

ABSTRACT

In general, the importance of using nanoparticles as carriers of drug was duo to high carrier capacity, high stability, probability of incorporation of both lipophilic and lipophobic drugs, and probability of various routes of administration, including inhalation rout and oral rout. The cyclodextrins (CD_s) as drug delivery system are used to solve the problem of hydrophobicity of drugs. Therefore, methotrexate (MTX) as hydrophobic drug was incorporated into β -CD/Alg nanoparticles to forming MTX- β -CD/Alg nanocomposites. The independent variable was beta-cyclodextrin, sodium alginate and calcium chloride, whereas the dependent variable was loading efficiency, Encapsulation efficiency and particle size, using full factorial design Minitab 18 software. The analysis of the model was carried out using graphical analysis such as Pareto chart, surface and contour plots, main effect plots, interaction plots, normal probability plot of the residuals and residuals versus corresponding predicted values plots. Analysis of variance (ANOVA) is structured to obtain the significant independent variables affecting on the dependent response by using P value lower than 0.05.The β -CD/Alg nanoparticlessamples were prepared by using different amounts of β -CD (50, 100, 200 and 500 mg) with sodium alginate at different amounts (25, 50, 100, 150 and 200 mg) and calcium chloride (30,45,60 and 75 mg) under pH at 10 with constant mass of MTX at 50 mg. The final product of nanocomposites was separated via centrifugation at 11000 rpm for 20 min and then dried. The final nanocomposites was characterized by Fourier transform infrared(FTIR), X-ray diffraction (XRD) and in vitro release. FTIR test was used to evaluate the functional groups of MTX loaded β -CD/Alg nanocomposites.While XRD pattern was used to explain the interaction between MTX and its carrier (β -CD/Alg) nanoparticles. This result could be clarified by the strong interaction which destroyed the close packing for beta cyclodextrin for the formation of crystallites between methotrexate and beta cyclodextrin.After *in vitro* release study of MTX from final formulation, the results suggested that the MTX exhibited prolonged from nanocomposites of formulation.

TABLE OF CONTENTS

ABSTRACTIV

TABLE OF CONTENTSVIII

LIST OF FIGURESXII

LIST OF TABLESXIV

LIST OF ABREVIATIONSXV

CHAPTER 1

INTRODUCTION	1
--------------	---

1.1) BACK GROUND1

1.2)	Problem	statement	3
------	---------	-----------	---

1.3) Design of experiments 4

1.4) Objectives 4

CHAPTER 2

LITRETURE	REVIEW	5
-----------	--------	---

- 2.1) Nanotechnology 5
- 2.1.1) Nano-particles and nano polymers
- 2.1.2) Nano composites polymers 6
- **2.1.3) Preparation of nanoparticles 7**
- 2.2) Cyclodextrins 9
- 2.2.1) General properties of cyclodextrins 9
- 2.2.2) Classification of cyclodextrins 10
- 2.2.3) Complexation of cyclodextrin with drugs 11

5

2.2.4) Beta cyclodextrin 11				
2.2.5) complexation of drugs with β -cy	clodextrin 12			
2.3) Alginate 14				
2.3.1) General properties and characte	erizations of al	lginate 14		
2.3.2) Formulation of alginate hydroge	ls15			
2.3.2.1) Ionic cross-linking15				
2.3.2.2) covalent cross-linking	16			
2.3.2.3) Thermal gelation		16		
2.3.3) complexation of drugs with algir	nate	16		
2.4) Chemotherapeutic drugs18				
2.4.1) Review of formulations contain	methotrexate		18	
2.5) Drug Release 20				
2.5.1) Diffusion process	20			
2.5.2) Swelling process	21			
2.5.3) Erosion process			22	
2.6) Design of experiments (DOE)	2	3		
CHAPTER 3				
METHODOLOGY			25	
3.1) Chemical materials	25			
3.2) Technical equipment			25	
3.3) Design of experiments	26)		
3.4) Preparation of nanoparticles and nanocomposites 29				
3.4.1) Checking the solubility			29	
3.4.2) Preparation of methotrexate loa	ded β-cyclode	xtrin/algina	ate	
nanocomposites 30				

3.4.2.1) Ionotropic gelation method of alginate **30**

3.4.2.2) Preparation of methotrexate/β-cyclodextrin solution 30

3.4.2.3) Preparation of methotrexate loaded β -cyclodextrin/alginate nanocomposites 31

3.5) Instrumentation	32	
3.5.1) Ultraviolet-visible spectrophotor	neter	32
3.5.2) Zetasizer		32
3.5.3) FTIR spectrophotometer	33	
3.5.4) X-ray Diffraction	33	

3.6) Loading efficiency and encapsulation efficiency of methotrexate **34**

3.7) In vitro release study of methotrexate from nanocomposites **34**

CHAPTER 4

RESULT AND DISCUSSION 36

4.1) Factorial design to optimization of variables of formulation36

4.2) Effect of formulation factors on loading efficiency, encapsulationefficiency and particle size 36

4.2.1) ANOVA values for loading efficiency, encapsulation efficiency

and particle size 39

4.2.2) Residual plots for loading efficiency, encapsulation efficiency

and particle size 44

4.2.3) Pareto charts of the standardized effects for loading efficiency, encapsulation efficiency and particle size **49**

4.2.4) Half normal plot of the standardized effects **51**

4.2.5) Contour and surface plots for loading efficiency, encapsulation efficiency and particle size 52

4.2.6) Main effect plots for loading efficiency, encapsulation efficiency and particle size 58

4.2.7) interaction plots for loading efficiency, encapsulation efficiency and particle size **60**

4.3) Optimization and validation of three models 64

4.4) Fourier transform infrared (FT-IR)65

4.5) X-ray Diffraction (XRD)67

4.6) Interaction between the components of the nanocomposites **68**

4.7) In Vitro release study69

CHAPTER 5

CONCLUSION 72

REFFERENCES 73

APPENDIXES 81

LIST OF FIGURES

Figure 1.1	Structure of methotrexate	3
Figure 2.1	Methods of nanoparticles production	9
Figure 2.2	Types of cyclodextrin	11
Figure 2.3	Structure of beta cyclodextrin	12
Figure 2.4	Structure of sodium alginate	15
Figure 2.5	Diffusion process diagrame	21
Figure 2.6	Swelling process diagrame	22
Figure 2.7	Erosion process diagrame	23
Figure 3.1	Solubility test of substances	30
Figure 3.2	Simple method of preparation methotrexate	32
	loaded B-CD/ALG	
Figure 4.1	Normal probability plot of residuals	46
Figure 4.2	Residual versus order of data	47
Figure 4.3	Residuals versus fits of data	48
Figure 4.4	Pareto charts of the standardized effects on	50
	loading efficiency, encapsulation efficiency and	
	particle size	
Figure 4.5	Half normal plot for (A) loading efficiency, (B)	52
	encapsulation efficiency and (C) particle size	
Figure 4.6	Contour and surface plots for loading efficiency	53
	against Alg, B-CD and CaCL2 variables	
Figure 4.7	Contour and surface plots for encapsulation	55
	efficiency against Alg, B-CD and CaCL2	
	variables	
Figure 4.8	Contour and surface plots for particle size against	57
	Alg, B-CD and CaCL2 variables	
Figure 4.9	Main effects plot for loading efficiency	58

Main effects plot for encapsulation efficiency	59
Main effects plot for particle size	60
Interaction plot for loading efficiency	61
Interaction plot for encapsulation efficiency	62
Interaction plot for particle size	63
The optimized concentrations for response factors	64
of LE, EE and particle size	
FTIR spectrum of (A) MTX, (B) β- CD, (C) Alg-	66
βCD and (D) MTX-Alg-βCD nanocomposites	
X-ray diffraction of (A) MTX, (B) β- CD and (C)	67
MTX-β CD-Alg nanocomposites	
Methotrexate loaded β-cyclodextrin/alginate	69
nanocomposites	
In vitro release of MTX from β-CD/Alg	70
nanocomposites in the pH 7.4	
	Main effects plot for encapsulation efficiencyMain effects plot for particle sizeInteraction plot for loading efficiencyInteraction plot for encapsulation efficiencyInteraction plot for particle sizeThe optimized concentrations for response factorsof LE, EE and particle sizeFTIR spectrum of (A) MTX, (B) β- CD, (C) Alg-βCD and (D) MTX-Alg-βCD nanocompositesX-ray diffraction of (A) MTX, (B) β- CD and (C)MTX-β CD-Alg nanocompositesMethotrexate loaded β-cyclodextrin/alginatenanocompositesIn vitro release of MTX from β-CD/Algnanocomposites in the pH 7.4

LIST OF TABLES

Table 3.1	Equipment are used in experiment	25
Table 3.2	Levels for β-CD, Na-Alg and CaCL2	26
Table 3.3	Samples by full factorial designs	27
Table 3.4	Solubility test of substances	29
Table 4.1	Data results for LE, EE and particle size	37
Table 4.2	ANOVA values for loading efficiency	39
Table 4.3	Regression equations in uncoded units for model	40
Table 4.4	Regression model for dependent variables	41
Table 4.5	ANOVA values for encapsulation efficiency	42
Table 4.6	ANOVA values for particle size	44
Table 4.7	The correlation coefficients (R2) obtained by	79
	fitting the MTX release data from β -CD/Alg	
	nanocomposites	

LIST OF ABREVIATIONS

MTX	Methotrexate
B-CD CoCl-	B-cyclodextrin Calcium Chlorida
CDs	Cyclodextrins
UV-vis	Ultraviolet-visible spectrophotometer
DLS	dynamic light scattering
XRD	X-Ray Diffraction
DMSO	Dimethyl Sulfoxide
CD	Cyclodextrin
SA	Sodium alginate
HCI	Hydrochloric acid
DHFR	Dihydrofolate reductase
THF	Tetrahydrofolates
RNA	Ribonucleic acid
DNA	Deoxyribonucleic acid
рН	Power of hydrogen
W/V	Weight per volume
mg	Milligram
ml	Milliliter
min	Minutes
%	Percentage
°C	Celsius
IC50	Half maximal inhibitory concentration
5-FU	5-Flurouracil
Μ	Molarity
rpm	Rounds per minute
EE	Encapsulation efficiency
LE	Loading efficiency
FTIR	Fourier Transform Infrared Spectroscopy
λ_{max}	Lambda max
nm	Nanometer
TGA	Thermo-gravimetric
R	Correlation of Coefficient
R^2	Coefficient of Determination