جامعة الاسراء

÷.

نموذج التفويض

أنا فاطمة معين فاضل الهدابي، أفوض جامعة الاسراء بتزويد نسخ من رسالتي للمكتبات أو المؤسسات أو الهيئات أو الأشخاص عند طلبهم حسب التعليمات النافذة في الجامعة. التوقيع:

التاريخ: 1/6/1 0202

Al-Isra University

Authorization Form

I'm Fatimah Mueen Fadhil Alhudaby, authorize Al-Isra University to supply copies of my Thesis to libraries or establishments or individuals on request, according to Al-Isra University regulations.

Signature:

Date: 11/6/2020

Design and synthesis of a potential lead compound quinazoline-lipoic acid

derivative for the treatment of Alzheimer's disease

By

Fatimah Mueen Fadhil Alhudaby

Supervisor

Dr. Qais Abualassal

A Thesis

Submitted to Faculty of Pharmacy as a Partial Fulfillment of the Requirements for the

Master's Degree in Pharmaceutical Sciences

Faculty of Pharmacy

Isra University

June, 2020

COMMITTEE DECISION

This Thesis (Design and synthesis of a potential lead compound quinazoline-lipoic acid derivative for the treatment of Alzheimer's disease) was Successfully Defended and Approved on ------

Examination Committee

Dr. Qais Ibrahim Abualassal (Supervisor). Assistant Professor of Medicinal Chemistry and Technology,

Israa University

Dr. Manal Al-Najdawi (Member) Assistant Professor of Drug discovery and Medicinal Chemistry, Israa University

Dr. Eyad Mazin Mallah (Member). Professor of Pharmaceutical Organic Chemistry, Faculty of Pharmacy and Medical Sciences, University of Petra.

iv

Dedication

Making this thesis come alive was one of my biggest dream in life, even when I was experiencing hardship and depression due sudden detours in my life, I still managed to persevere and complete my work. It wasn't easy but somehow imade it through. I'd like to thank almighty God for giving me the patience and determination to make it happen. I've finally made it.

For my father, Mueen Fadhil al-khafaji, you work tirelessly all your life so I wouldn't go without. I've never said this to you but I'm indebted to you for everything you've done. I want you to know that your support mattered immensely to me. Your enthusiasm for my work release encouraged me to make it happen. I hope I've made you proud and that you're pleased with how far I've come despite the obstacles I've faced and criticisms levelled against me.

For my mother, whose words were a remedy and who never stopped believing in me, always prayed and wished the best for me. I love you always and pray that I've made you proud too.

For my elder sister and her family, who helped me overcome the challenges I experienced writing this thesis. You supported me immensely, you are my backbone. You are always there for me. You encouraged me with your words of wisdom when I felt hopeless about myself and the world. Thank you for always being there for me.

For my little brother, Ali, thank you for support me.

For my lovely friend, Dhuha, who supported me for 7 years during stay in this beautiful country (Jordan), we worked hard together and challenged a lot of difficulties to reach this position.

v

Acknowledgment

I'd like to express my honest thankfulness to, Dr. Qais Ibrahim Abualassal, my supervisor for the continuous support of my master degree research, for his motivation, patience, enthusiasm and immense information. His leadership assisted me in all the time of research work and writing of the thesis. I couldn't have imagined having a better supervisor and mentor for my research.

Beside my supervisor, I'd like to thank the rest of my thesis committee(Dr. Eyad Mazin Mallah, Dr. Manal Al-Najdawi) for their encouragement and insightful comments. I'd also like to thank Isra University for giving me the opportunity for doing this research specially Dr.zead abudeyah for his support during this project.

TABLE OF CONTENTS

Number	Content	
	Committee Decision	Iii
	Dedication	Iv
	Acknowledgement	V
	Table of Contents	Vi
	List of Tables	Viii
	List of Figures	Ix
	List of Schemes	X
	List of Abbreviations	Xi
	Abstract	Xiii
1	Introduction	2
1.1	Symptoms of Alzheimer's disease	2
1.2	Risk factors for Alzheimer's disease	3
1.3	Pathophysiology for Alzheimer's disease	4
1.4	Cholinergic hypothesis	4
1.5	Commercially available drugs used in treatment of Alzheimer's disease	5
1.6	Oxidative stress	6
1.7	Aim of the work:	8
2	Previous studies	10
2.1	Quinazoline	10
2.2	Lipoic acid	12
3	Materials and Methods	16
3.1	Material	16
3.2	Methods	16
3.2.1	Thin-layer chromatography (TLC)	16

3.2.2	Column chromatography	17
3.2.3	Gas chromatography-mass spectroscopy (GC-MS) analyses	17
3.2.4	Nuclear Magnetic Resonance Spectroscopy (NMR)	18
4	Experimental	20
4.1	Reaction 1: synthesis of 2-methylaminobenzamide (2)	20
4.2	Reaction 2: synthesis of 1'-methyl-1H'-spiro [cycloheptane-1, 2'- quinazolin]-4'(3'H)-one (3).	22
4.3	Reaction 3: synthesis of 1'-methyl-3', 4'-dihydro-1'H-spiro (cycloheptane- 1, 2';-quinazoline (4)	24
4.4	Reaction 4: synthesis of compound 5 (quinazoline-lipoic acid hybrid).	26
5	Results and Discussion	30
6	Conclusions and recommendations	35
6.1	Conclusions	35
6.2	Recommendations	35
7	References	37
	Abstract (in Arabic language)	41

LIST OF TABLES

Number	Table caption	Page
1	Optimization of reaction conditions used for the synthesis of compound 3 .	31
2	Optimization of reaction conditions used for the synthesis of compound 4 .	32

LIST OF FIGURES

Number	Figure caption	Page
Fig. 1	Ach enzyme.	5
Fig. 2	6: general structure of quinazoline moiety, 7: deoxyvasicine, 8: 3-chloro hexahydroazepino [2, 1-b] quinazoline, 9: rutacarpine, 10: 2-(2-indolyl-)- 4(3H)-quinazolines	10
Fig.3	Structure of DHED.	11
Fig.4	Structure of lipoic acid	12
Fig.5	GC-MS spectrum of compound 2	21
Fig.6	GC-MS of compound 3	23
Fig.7	GC-MS spectrum of compound 4	25
Fig.8	GC-MS for compound 5	27
Fig.9	C ¹³ -NMR of compound 5	28
Fig.10	H ¹ -NMR of compound 5	28

List of schemes

Number	Scheme caption	page
Scheme. 1	Synthesis the hybrid molecule of quinazoline-lipoic acid derivative 5 .	8
Scheme. 2	Synthesis of multi-target tacrines derivatives	13
Scheme. 3	Mechanism of reaction for the synthesis of compound 3 .	30
Scheme. 4	Mechanism of reaction for the synthesis of compound 4 .	31
Scheme. 5	proposed mechanism of one pot synthesis reaction	32

LIST OF ABBREVIATIONS OR SYMBOLS

Abbreviation or symbols	Definition
Ach	Acetylcholine
AchEI	Acetylcholinesterase inhibitors
AchEs	Acetylcholinesterase
AD	Alzheimer's disease
Αβ	Beta – amyloid
BchEs	Buterylcholinesterases
CDCl ₃	Deuterated chloroform
DCM	Dichloromethane
DHED	Dehydroevodiamine hydrochlorid
DPPH	2,2-diphenyl-1-picrylhydrazyl
Eq	Equivalent
FDA	Food and Drug Administration
FID	Flame ionization detection
GC-MS	Gas chromatography-mass spectroscopy
H2O	Water
H ₂ O ₂	Hydrogen peroxide
Hr	Hour
IR	Infra-red spectroscopy
LA	Lipoic acid
LiAlH ₄	Lithium Aluminum hydride
N ₂ O ₃	Di-nitrogen trioxide
Na ₂ SO ₄	Sodium Sulfate
NaOH	Sodium hydroxide
NMR	Nuclear magnatic resonance spectroscopy
<i>p</i> -TSA	Toluene-4-sulfonic acid monohydrate

Rf	Retardation Factor
RNS	Reactive nitrogen species
ROS	Reactive oxygen species
SAR	Structure Activity relationships
SOCl ₂	Thionyl chloride
TEA	Triethyl amine
THF	Tetrahydrofuran
TLC	Thin-layer chromatography
TMSCl	Trimethylsilyl chloride
t _R	Retention time
UV	Ultra- Violet

Design and synthesis of a potential lead compound quinazoline-lipoic acid

derivative for the treatment of Alzheimer's disease

Prepared by

Fatimah Mueen Fadhil Alhudaby

Supervised by

Dr. Qais Abualassal

Abstract

Alzheimer's disease (AD) is one of most common neurodegenerative disorder and irreversible form of dementia in elderly people and the available treatment for this disease is only symptomatic and doesn't delay the disease progression. Alzheimer's disease is multi-factorial disease involved several pathological hypothesis mainly cholinergic and oxidative stress hypothesis.

Quinazoline derivative moiety had been reported in many previous studies that had inhibition activity against acetylcholine esterase (AChE) the main enzyme in cholinergic hypothesis. In this work we designed and synthesized a novel hybrid compound of quinazoline-lipoic acid derivative (compound 5) which supposed to have dual activity to delay the progression of AD. Compound 5 synthesis was started from N-methyl isatoic anhydride that react with aqueous ammonia to form compound 2 in 95% yield, compound 2 then reacted with cycloheptanone to form Spiro compound 3 in 94% yield. Compound 3 then reduced to form compound 4 with 95% yield, compound 4 then coupled with lipoic acid using thionyl chloride, the reactions monitored

with TLC and the final product characterized by GC-MS, H-NMR and C-NMR. Compound **5** was synthesized in 25% yield and could biologically evaluated for its ability to inhibit AChE and its anti-oxidant activity as future work.