

Intelligent Hybrid Approach for Classification Accuracy of Intrusion Detection System

Prepared By: Mustafa Nihad Abbas

Supervisor Prof.Dr.Mohammad Ahmad Alfayoumi

This Thesis Submitted in Partial Fulfilment of the Requirements for

The Master Degree in Software Engineering

Isra University

Amman, Jordan

2019/2020

AUTHORIZATION STATEMENT

I am Mustafa Nihad Abbas, authorize Isra University to provide hard copies or soft copies of my thesis to libraries, institution or individuals upon their request.

Name: Mustafa Nihad Abbas

Signature: 17/12/2019

اقرار تفويض

اني مصطفى نهاد عباس، افوض جامعة الإسراء للدراسات العليا بتزويد نسخ من رسالتي ورقياً و إلكترونياً للمكتبات او المنظمات او الهيئات و المؤسسات المعنية بالأبحاث و الدراسات العليا عند طلبها.

الإسم: مصطفى نهاد عياس

التوقيع:

| 12(25: レノノン / 10 / 10 -)

The undersigned have examined the thesis entitled (Intelligent Hybrid Approach for Classification Accuracy of Intrusion Detection System) presented by (Mustafa Nihad Abbas) a candidate for the degree of Master of information technology in software engineering and hereby certify that it is worthy of acceptance.

14/12/2019

Date

Prof.Dr.Mohammad Ahmad Alfayoumi

15.12.2019

Date

Dr. Mudhafar Al Jarrah

16.12.2019

Date

Dr. Venus W. Samawi

LIST OF CONTENTS

LIST OF CONTENTS	i
LIST OF TABLES	7
LIST OF FIGURES	8
ABSTRACT	10
CHAPTER ONE INTRODUCTION	1
1.1 OVERVIEW	1
1.2 PROBLEM STATEMENT	3
1.3 RESEARCH QUESTIONS	4
1.4 THE AIM OF THE STUDY	4
1.5 THE OBJECTIVES	4
1.6 THE SCOPE OF THE STUDY	5
1.7 RESEARCH PROCESSES	5
1.8 THESIS OUTLINE	7
CHAPTER TWO BACKGROUND AND LITERATURE REVIEWE	8
2.1 INTRODUCTION	8
2.2 INTRUSION DETECTION SYSTEM (IDS)	8
2.2.1 A brief history of IDS	10
2.2.2 Classification of IDS	11
2.2.3 Approaches to IDS	13
2.2.4 Challenges in IDS	16
2.3 Feature Selection	18
2.4 Feature Selection Evaluation Measures	20

2.5 FEATURE SELECTION PROBLEM IN IDS	23
CHAPTER THREE DESIGN AND IMPLEMENTATION	26
3.1 INTRODUCTION	26
3.2 INTRUSION DETECTION SYSTEM (NSL-KDD)	26
3.3 THE PROPOSED INTRUSION DETECTION SYSTEM	29
۳٫٤ THE PROPOSED FEATURE SELECTION ALGORITHM	32
3.4.1 Firefly Algorithm	32
3.4.2 The Proposed FA	35
3.5 SUMMARY	39
CHAPTER FOUR RESULTS AND DISCUSSION	40
4.1 Introduction	40
4.2 Experimental Settings	40
4.3 Results and Discussion	41
4.3.1 The Effect of Swarm Size and Number of Iterations	41
4.3.2 The Effect of Swap Variable	47
4.4 RESULTS COMPARTISON	49
CHATER FIVE CONCLUSION	51
5.1 INTRODUCTION	51
REFERENCES	55

LIST OF TABLES

Table 3-1	The features of the NSL-KDD data set	28
Table 3-2	Distribution of attack records per NSL-KDD attack category	29
Table 4-1	Parameter Settings	41
Table 47-	The results of 15 run times for scenario 1	42
Table 47-T	he results of 15 run times for scenario 2	42
Table 4٤-T	he results of 15 run times for scenario 3	43
Table 4°-T	he results of 15 run times for scenario 4	43
Table 47-	The results of 15 run times for scenario 5	44
Table 4Y-T	he results of 15 run times for scenario 6	44
Table 4^-T	he results of 15 run times for scenario 7	45
Table 49-T	he results of 15 run times for scenario 8	45
Table 4-10	The summarized results for the proposed algorithm	46
Table 4-11	Results of the proposed algorithm for Swap = 5	47
Table 4-12	Results of the proposed algorithm for Swap = 10	47
Table 4-13	Results of the proposed algorithm for Swap = 15	48
Table 4-14	Results of the proposed algorithm for Swap = 20	48
Table 4-15	The results of all the algorithms	50

LIST OF FIGURES

Fig 1-1	Research Process	6		
Fig 2-1	The structure of IDS	9		
Fig 2-2	Classification of IDS based on data collection and storage	11		
Fig 2-3	Data analysis and process-based classification of IDS	12		
Fig 2-4	Feature Selection Process	20		
Fig 2-5	Types of feature selection evaluation measure	21		
Fig 2-6	Filter-based feature selection	22		
Fig 2-7	Wrapper-based feature selection	23		
Fig 2-8	Process of Knowledge discovery	24		
Fig 3-1	Block diagram of the proposed system	31		
Fig 3-2	Flowchart of standard FA	34		
Fig 3-3	Flowchart of GA-FA	36		
Fig 3-4 The	e structure for each firefly	37		
Fig 3-5 A §	Fig 3-5 A graphical illustration for Crossover operator			
Fig 4-1 The	e effect of swarm size and iteration number on the accuracy	46		

LIST OF ABBREVIATION

IDS	Intrusion Detection System
DDOS	
R2L	
GA	Genetic Algorithm
GWO	Grey Wolf Optimizer
PSO	Particle Swarm Optimization
FFA	Firefly Algorithm
ACO	Ant Colony Optimization
NFL	No-Free Lunch Theorem
GD	Gradient Decent
KNN	K Nearest
SVM	Support Vector Machine
NSL	Network Socket Layer
BP	Backpropagation
PCA	Principle Components Analysis
RF	Random Forrest
SOM	Self-Organization Maps
SFLA	Shuffled Frog Leaping Algorithm
BBO	Biogeography-Based Optimization
PSO	Particle Swarm Optimization
ABC	Artificial Bee Colony
CS	Cuckoo Search
BA	Bat Algorithm

ABSTRACT

Intrusion detection system (I.D.S) is an essential component, which enhances the security of computer systems by actively detecting all forms of attack at the early stages. The main use of IDS is the monitoring of the network traffics and analyzing the behavior of the users in searching for any abnormal activity or attack signature for real-time intrusion detection. The main weakness in any IDS is their inability to offer adequate sensitivity and accuracy; coupled with their inability to process enormous data. To address these issues (such as the increasing traffic, huge behavior profiles, large signature databases, and the inability of differentiating normal behaviors from the suspicious ones), several algorithms have been developed. Hence, the main aim of this work is to choose the differentiating features for the development of an optimal machine learning algorithm which can offer high detection rates, fast training, and testing processes offline. The proposed machine learning model contains a feature selection algorithm (wrapper type) which is based on the integration of the Binary Firefly algorithm enhanced for feature selection by crossover operator taking from the genetic algorithm, called (GA-FA) with the Naïve Bayesian Classifier (NBC). The performance of the proposed model was tested on NSL_KDD data sets prepared by the MIT Lincoln Laboratory. The model testing was based on several experiments and different scenarios (the effect of swarm size, number of iterations, and the Swap). For evaluating the ability to select the minimum number of features with the higher value of classification accuracy, the algorithm worked perfectly and selected a comparable number of features. The model achieved the best average accuracy of 97.011%. In conclusion, the proposed feature selection algorithm has the ability to select the most relevant features which enhance the classification accuracy of the network intrusion detection system.