

Implementing (Fourth, Fifth Dimensions, Clash Detection) of Building information Modeling in Jordan

Prepared by Hussam Hesham Zakieh

Supervised by Associate Prof. Dr. Ibrahim A. Mohammed

A Thesis

Submitted to Faculty of Engineering as a Partial Fulfillment of the Requirements for Master Degree in Engineering Project Management

August 2019

i

Authorization Form

I, Hussam Hesham Zakieh, authorize the Al Isra University to supply copies of my Thesis/ Dissertation to libraries or establishments or individuals on request, according to the Al Isra University regulations.

Signature:

Date:

20/ 9/9/3

COMMITTEE DECISION

This Thesis/Dissertation (Implementing (Fourth, Fifth Dimensions, Clash Detection) of Building information Modeling in Jordan) was Successfully Defended and Approved on -----

Examination Committee

Assoc.Dr. Ibrahim A. Mohammed, (Supervisor) Faculty of Engineering Isra University

Signature

Assoc.Dr. Mohammad Zakariya Siam. (Member) Faculty of Engineering Isra University

Assoc.Dr. Ahmed Ali Khatatbeh (Member) Faculty of Engineering *Al Albayt University*

Implementing (Fourth, Fifth and Clash Detection) of Building information Modeling in Jordan

By Hussam Hesham Zakieh

Supervisor

Associate Prof. Dr. Ibrahim A. Mohammed

Abstract

Construction industry must play a key role in the duration of the project. It must be based on a solid foundation, human and human resources management and the exploitation of the gains mainly on society in a meaningful way.

With the tremendous technological development of our time, the role of Building Information Modeling (BIM) has been widely seen in the recent period due to the development of modern software and simple to use compared to other software to meet the requirements of BIM beneficiaries and the integration of all parties of the project (the employer) Consultant and contractor), and designers of the program from various disciplines architectural, construction, mechanics, electricity and health work also where they are integrated and the link of information between them.

The purpose of this thesis is to study how to use BIM to apply the fourth dimension (Time), the fifth dimension (Cost), to explore intersections of various elements, and ways to solve these intersections.

The study included the selection of one of the buildings in Jordan - Khalda - after review of the previous studies. Based on the drawings plan, Elevations, the building was modeled by Autodesk Revit software. The fourth and fifth dimensions were applied to the Autodesk Navisworks. The researcher has discovered through previous studies that the discovery of intersections during the design process reduces errors and problems during the implementation phase, and reduces the project time from the traditional methods. One of the best programs to explore intersections (Autodesk Navisworks).

Finally, the researcher recommends the application of BIM technology for engineering projects and the training of engineering personnel in companies in Jordan to make the most of the engineering project information during project life cycle.

Table of Contents

Authorization Form	Error! Bookmark not defined.
Abstract	iv
Table of Contents	vi
List of Figures	viii
List of Table	X
List of Abbreviations	xi
CHAPTER ONE	2
Introduction	2
1.1 Introduction	2
1.2 The BIM Concept, Its Intends and Processes	4
1.3 Research Significance	5
1.4 Research Objectives	5
1.5 Methodology	7
1.6 Thesis Structure	8
CHAPTER TWO	9
Literature Review	9
2.1 Introduction	9
2.2 BIM in the Architecture, Engineering and Construction	(AEC) Sector9
2.3 BIM in Jordan	
2.4 BIM Meaning and Processes	
2.5 BIM Benefits	
2.6 BIM and construction feasibility	14
2.7 Quality & BIM	
2.8 BIM Dimensions	
CHAPTER THREE	
BUILDING INFORMATIOM MODELING (BIM)	
3.1 Introduction	
3.2 Planning for BIM Success	
3.3 Scheduling	
3.4 Estimating Costs	
3.5 Constructability	
3.6 Controlling Schedules	
3.8 BIM Dimensions	
3.8.1 3D (The Shared Data Model)	23
3.9 BIM Execution Plan	
3.10 Why Should the Project Team Develop a BIM Project	Execution Plan?28
3.11 BIM Project Execution Planning Procedure	
3.13 Quality Assurance and Quality Control	

3.14 Workflow of Design-Build Projects
CHAPTER FOUR
Application BIM Model and (4D, 5D, Clash Detection) For Project CAD in Jordan37
4.1 Introduction
4.2 Making Building Information Model from CAD File
4.3 BIM Workflow (BEP) and Coordination Matrix
4.4 BIM Coordination by Autodesk Revit
4.5 BIM Coordination by Autodesk Navisworks Manage
4.6 Solving Clashes Using Different Methods (ID Element Method, Swatch Back Method, Clash Sphere Point Method)
4.6.3.2.2 Running Clash Test. Useing Navisworks Manage to Run Clash Test. Geting results. Then Export Report As XML
4.6.3.2.4 Exporting Report As xml
4.6.3.2.5 Creating a Revit Clash Coordination Model
4.6.3.2.6 Use Dynamo Player to locate the clashes using the Clash Spheres Family69
4.7 Simulation 4D, and 5D80
4.7.2 Task Types
4.8.3 Exporting Animation TimeLiner 4D, 5D Simulation82
CHAPTER FIVE
5.1 Conclusion
5.2 Recommendation
References
Appendix

List of Figures

Figure(1-1):Contributory to the BIM (Lars Peter Lennert-2012)	4
Figure: (1-2) Methodology	7
Figure (3-1): 5D data flow process (Lars Peter Lennert, 2012)	.20
Figure: (3-2) The BIM Project Execution Planning Procedure (John Messner, Chim	nay
Anumba, etal, 2013)	.29
Figure: (3-3) Portion of the Information Exchange Spreadsheet template (BIM Project	t
Execution Planning Guide and Templates_V2.1)	.30
Figure (3-4) Coordination Workflow (John Messner, Chimay Anumba, etal, 2013)	.35
Figure (4-1): Arch - Floor Plan - Ground Floor	.39
Figure (4-2): Arch - Floor Plan - First Floor	.40
Figure (4-3): Arch - Floor Plan - Second Floor	.41
Figure (4-4): Arch – Section A-A	.42
Figure (4- 5): Arch - Elevation - East	.43
Figure (4-6): Arch - Elevation - North	.44
Figure (4-7): Arch - Elevation – South	.45
Figure (4-8): Arch - Elevation - West	.46
Figure (4-9): Architectural - 3D BIM Model	.47
Figure (4-10): Structural - 3D BIM model	.48
Figure (4-11): Mechanical - 3D BIM model	.49
Figure (4-12): Electrical- 3D BIM model	.50
Figure (4-13): Coordination - 3D BIM model	.51
Figure (4-14): Script dynamo remove duplicate elements	.52
Figure (4 -15): The coordination matrix	.53
Figure (4-16): Coordination matrix for the project	.54
Figure (4-17): Interference report (Revit) Arch Vs Str	.55
Figure (4-18): Interference report (Navisworks) Arch Vs Arch	.56
Figure (4-19): ID element method	.57
Figure (4-20): Choosing part ID within the inquiry panel.	.58
Figure (4-21): Activating the Navisworks switchback feature	59
Figure (4-22): Selecting the element you want to adjust	.59
Figure (4-23): Automatically opening in Revit	60
Figure (4-24): Selecting your object in Navisworks	60
Figure (4-25): Exporting scene as	62
Figure (4-26): open the NWC files	63
Figure (4-27) Opening the NWC files	.05
Figure (4-27) Opening the rower mesaning field and the figure (4-28). Running your clash test	.04
Figure (4.20) : Adding a new clash test	.07
Figure $(4-20)$: Expansion button and renaming accordingly	.05
Figure $(4-30)$: Running all the tests in the test namel	.05
Figure $(4-37)$: Reviewing the closes	.00
Figure (4-32): Exporting clash report to YMI	.00
Figure (4-33). Exporting clash report to XML	.07
Figure (4-54). Writing report oution and saving the AML report	.07
Figure (4.35). Export report as xilli	.0ð
Figure (4-50): Opening the excel content menu	.08
Figure $(4-57)$: Using dynamo player	.09
Figure (4-58): Dynamo player dialog	./0
Figure (4-39): link Excel Spreadsheet file	./1
Figure (4-40): Opening the clash detection workspace	./1

Figure (4-41): Viewing the clash spheres	72
Figure (4-42): Sphere family is a basic sphere with specific shared parameters	73
Table (4-1) Clash Chart for the number	78
Figure (4-43) Clash Charts_ Power BI	79
Figure (4-44): Giving the fourth and fifth dimension data	80
Figure (4-45): Animation export dialog	82
Figure (4-46): Exporting animation	83
Figure (4-47): Video presentation (4D, 5D)	84

List of Table

Γable (4-1) Clash Chart for the number	74
--	----

List of Abbreviations

Abbreviation	Meaning	Description
2D	Two-dimensional drawing	A 2D drawing
3D	Three-dimensional model	A 3D model containing geometrical information about a building
4D	3D + time	A 3D model linked to time or scheduling data
5D	4D + cost	A 3D model linked to time and cost data.
AEC	Architecture, Engineering and Construction	Used when referring to the whole industry surrounding building construction projects
BATID	Element Identity	IFC specification based on Element ID
BCF	BIM Collaboration Format	A pre - release, submitted to building SMART under the new "Affiliation Scheme" to become an official building SMART specification
bcfzip	Zipped BCF file	Compressed BIM collaboration file format
BIM	Building Information Model / Modeling / Management	Concept and method of generating and administrating building data
BIPS	Byggeri, informationstek nologi, produktivitet, samarbejde	Membership driven, non-profit association working for Danish construction companies
BSI	Building SMART International	A neutral, international and unique non - profit Organization supporting open BIM through the life cycle
CIFE	Center for Integrated Facility Engineering	Academic research center for virtual Design and construction of AEC industry projects
CII	Construction Industry Institute	A consortium the purpose is to measurably improve the delivery of capital facilities
CAD	Computer - Aided Design	The use of computer technology for the design of objects
CD	Compact Disc	Unit for storing of data

Abbreviation	Meaning	Description
DWF	Drawing Format	A compressed 2D/3D drawing format developed
		by Autodesk, contain design data, graphics and text
DWG	Drawing	A binary file format used for storing 2D and 3D
		design data
FM	Facility	Interdisciplinary field devoted to the
	Management	coordination of business support services,
		functions in buildings
GC	General Contractor	Responsible for the day-to-day oversight of a
		construction site, management of vendors and
		trades and communication of information to
		involved parties throughout the course of a
		building project
GUID	Globally Unique	A 128-bit number used by programs to uniquely identify
	Identifier	the location of a data object.
HVAC	Heating,	Heating, ventilation and air conditioning
	Ventilation and	systems used in buildings
	Air Conditioning	
	systems	
HTML	Hyper Text Markup	A web-browser based clash detection report, which
ID	Identity	Term used for object or item uniqueness
	5	J 1
DEL	De sus e st. fe s	Driver ilegend to a the information to half make
KFI	Information	a decision on what steps to take next
PEP, BXP	BIM Execution	facilitating the management of information
	Plan	
RVT	Revit project file	Architectural/Structural/MEP design project
	ne n project me	created with Revit
TBS	Tekla BIM sight	Clash detective software from Tekla
ТХТ	Text	Standard text document that contains unformatted
		text
XML	Extensible Markun	Used to define documents with a standard format
	Language	that can be read by any XML-compatible
		application

Abbreviation	Meaning	Description
IFC	Industry Foundation Classes	Open file format that is being developed with the goal of becoming a universal information exchange standard in the industry
ΙΤΟ	Information Take- off	Data gathering and capturing of information available Within a BIM model
LBS	Location Breakdown Structure	Relates to a physical or logical breakdown of the project
LOB	Line-of-Balance	A graphical scheduling method focusing on continuous resource utilization in repetitive activities
MEP	Mechanical, Electrical and Plumbing	Mechanical, electrical and plumbing building services or the engineering disciplines associated with them
NW19	Navisworks Manage 2019	Autodesk software package used for engineering design review and 4D
NWC	Navisworks Cache File	File containing geometry and metadata in the native format for Navisworks. It enables models to load more quickly
NWD	Navisworks Published Data File	File format which stores all project assets in a standalone document for review
NWF	Navisworks Review File	Master file format containing NWC file(s)
PDF	Portable Document Format	A compacted file that captures document text, fonts, images and even formatting of documents from a variety of applications
PFA	PFA Ejendomme A/S	The owner/client for the building case described in this thesis
QA	Quality Assurance	Set of procedures intended to ensure that a product or service under development meets the specified requirements
QC	Quality Control	Set of procedures intended to ensure that a product or performed service adheres to a defined set of quality criteria or meets the requirements of the client or customer
MP	Manage Project	Temporary endeavor undertaken to create a unique product, service or result.
LOD	Level of Development	Core to the concept is that the level of development defines the content and reliability of BIM elements at different stages or milestones.