تموذج تقويض

i

ايمان جمال مختار الأوض جامعة االاسراء يتزويد تسخة من رسالتي /اطروحتي للمكتبات أو المؤسسات Lii ار الهينات او الاشخاص عن طليها حسب التخيمات التافذة في الجامعة.

التوقيع: لم التوليع: ٢٠ / ٢٠ / ٢٠ ٢

Isra University

Authorization Form

I, Eman Gamal moktar, authorize Isra University supply copies of my Thesis/

Dissertation to libraries or establishments or individuals on request, according to Isra

University regulations.

Signature:

Date:

25/8/2019

Design, preparation and evaluation of Glipizide solid lipid nanoparticles for improving its oral bioavailability

By Eman Gamal Mokhtar

Supervisor Dr. Jamal Alyoussef Alkarad, Associate Professor

This thesis was submitted in partial fulfillment of the requirements for the master's degree of pharmaceutical Sciences

Faculty of pharmacy Isra University

August, 2019

COMMITTEE DECISION

This Thesis/Dissertation (Design, preparation and evaluation of Glipizide solid lipid nanoparticles for improving its oral bioavailability)

Signature /
2.D
G
ciefuso

iii

اهداء

الغائبة عنها منذ سنوات في غربتي الطويلة ودعواتها وملامح وجهها الجميل ترعى روحي

••

اخي محمد شقيقي وصديقي لازلت اري فيه حنان وعطف ابي

••

••

اشقاني احمد ومحمود وعلي اخوتي حياة وسماح وميادة وسجي اسأل الله ان يجمعني بكم علي خير .. هولاء هم رفقاء عمري وشركاء كفاحي

اهدي لهم نجاحي

iv

Acknowledgement

It is my great pleasure to express my deep everlasting gratitude to Dr. Jamal Alyoussef Alkarrad, for supervising of this thesis

Dr. Rashad Mostafa, for his advices in this thesis

Special thanks for Ashur University College for allowing working in its laboratories

.Special thanks for Trium pharma for analysis blood samples of oral bioavailability test

LIST OF CONTANTS

Title	Page No.
Authorization Statement	I
Thesis title	Ii
Committee Decision	Iii
Acknowledgement	V
List of contents	Vi
List of tables	Ix
List of figures	X
List of abbreviations	Xii
Abstract	Xiv
Chapter one	1
1.1. Background of study	1
1.2. Problem statement	2
1.3. Signification of the Study.	2
1.4. Objectives	3
1.5 Aim of the study	3
Chapter two	4
2 Literature Review	4
2.1 Structure of lipid Nano dispersed vehicle systems	4
2.1.1 Advantages of SLNs camper with polymeric nanoparticles.	5
2.1.2 Disadvantages of SLNs	6
2.1.3 Factors affecting loading capacity of SLNs	6
2.1.4 Mechanism of oral absorption enhancement of SLNs.	6
2.1.5 Mechanism of drug release from SLNs.	7
2.2 Production of Solid Lipid Nanoparticles	8
2.2.1. High shear homogenization (HSH).	9
2.2.2 Production of SLNs via microemulsions	10
2.2.3 Preparation by solvent emulsification-evaporation or diffusion.	11
2.2.4 Preparation by w/o/w double emulsion method	12
2.2.5 Preparation by high speed stirring and/or ultra-sonication	13
2.3 Administration routes of Solid Lipid Nanoparticles	13
2.3.1 Parenteral route.	13
2.3.2 Oral route.	14
2.3.3 Rectal rote.	14
2.3.4 Nasal rote.	14
2.3.5 Respiratory rote.	15
2.3.6 Ocular rote.	15
2.3.7 Topical application	16
2.4. Characterization of SLNs	16
2.4.1. Measurement of particle size	16
2.4.2. Zeta potential.	17
2.4.3. Electron microscopy	18

2.5 Drug delivery sustained release	18
2.6 Glipizide	19
2.6.1 Structure of Glipizide.	21
2.6.2 Solubility	21
2.6.3 Conditions of storage and Stability.	22
2.6.4 Dosage form	22
2.6.5 Pharmacokinetics	22
2.6.5.1 Absorption.	22
2.6.5.2 Distribution and metabolism.	23
2.6.5.3 Biotransformation and elimination	23
2.6.6 Pharmacodynamics	23
2.6.6.1 Mechanism of action	23
2.6.6.2 Therapeutic indications	24
2.7 Physicochemical properties of Glipizide	25
2.8 Diabetes	25
2.8.1 Definition	25
2.8.2 Signs of diabetes	26
2.8.3 Types of diabetes	26
2.8.3.1 Type 1 diabetes	26
2.8.3.2 Type 2 diabetes.	27
2.8.3.3 Gestational diabetes	27
2.8.4 Treatment of diabetes.	28
2.8.4.1 Type 1 diabetes.	28
2.8.4.2 Type 2 diabetes.	28
2.8.4.3 Oral anti-diabetic medications.	28
2.9. Animals model for studying diabetes mellitus.	28
2.9.1 Streptozotocin model of diabetes mellitus.	29
Chapter 3	30
3. Methodology	30
3.1 Materials	30
3.2 Equipment	31
3.3 Methodology	32
3.3.1 Solubility studies	32
3.3.2 Ranking order	32
3.3.3 HPLC analysis of Glipizide	33
3.3.3.1 Preparation of mobile phase	33
3.3.3.2 Preparation of standard solution of Glipizide	33
3.3.3.3 Preparation of test solution	33
3.3.4 HPLC Procedure.	34
3.3.5 Validation of the method	34
3.3.5.1 Specificity	34
3.3.5.2 Linearity	34
3.4 Formulation of Glipizide SLNs	34
3.5 Evaluation of Glipizide SLNs Particle characterization	36
3.5.1 Transmission Electron Microscope (TEM)	36
3.5.2 Determination of particle size and polydispersity index (PDI)	36
3.5.3 Zeta Potential Measurements	36
3.5.4 Determination of percent drug content (DC)(Assay), percent entrapment	37

3.5.5 Determination of percent production yield of Solid Lipid Nanoparticles	38
3.6 In-vitro release study	38
3.6.1 In- vitro release experiment	38
3.6.2 Kinetic analysis of the release data	39
3.7 Determination of anti- diabetic effect of Glipizide SLNs in rats	39
3.7.1 Calculation of animal dose	39
3.7.2 Induction of experimental diabetes.	40
3.7.3 Experimental procedure.	40
3.8 Liquid chromatography mass spectrometry (LC-MS-MS) analysis of Glip.	42
3.8.1 Preparation of mobile phase.	42
3.8.2 Preparation standard solution.	42
3.8.3 Glipizide solutions for the preparation of calibration standards.	42
3.8.4 Preparation of Gliclazide working solution (internal standard) (25 µg/ml).	42
3.8.5 Preparation of calibration standards from plasma.	42
3.8.6 Sample extraction	42
3.8.7 Chromatographic conditions.	43
3.9 Oral bioavailability study	43
3.9.1 Methodology	43
3.9.2 Experimental procedure.	44
Chapter four	46
4. Results and discussion	46
4.1 Solubility studies	46
4.2 Assay validation of HPLC method for analysis of Glip. SLNs	46
4. 2.1 Specificity	47
4.2.2 Sensitivity.	47
4.2.3 Linearity.	47
4.3 Particle characterization	49
4.3.1 Transmission Electron Microscope (TEM)	49
4.3.2 Determination of particle size and polydispersity index (PDI).	54
4.3.3 Zeta potential (ξ)	63
4.3.4 Determination of percent drug content (Assay)	65
4.3.5 Determination of percent entrapment efficiency and percent drug loading.	66
4.3.6 Determination of percent production yield of Solid Lipid Nanoparticles.	69
4 .4 In-vitro release study	71
4.4.1 In-vitro release of Glip-SLNs different formulae	71
4.4.2 Kinetic analysis of the release data	75
4.5 Determination of anti- diabetic effect of Glip - SLNs in rats	77
4.6 Determination oral bioavailability in blood plasma.	83
4.6.1 Specificity	83
4.6.2 Sensitivity.	84
4.6.3 Linearity	84
5. Conclusion	86
6. References.	87

LIST of TABLES

Table No.	Title	Page No.
Table I	Physicochemical properties of Glipizide.	25
Table 1	Ranking order model for GlipSLNs different formulae	32
Table 2	Composition of the prepared Glipizide SLNs	36
Table 3	Mean particle size of Glipizide SLNs formulations	55
Table 4	Polydispersity index (PDI) of Glipizide SLNs formulations	56
Table 5	Zeta Potential (ξ) Values of different Glipizide Solid lipid Nanoparticles formulations.	64
Table 6	Percent drug content values of different Glipizide Solid Lipid Nanoparticles Formulations.	66
Table 7	% E.E. and % D.L. of different Glip SLNs formulations	66
Table 8	% PY values of Glip SLNs different formulae	70
Table 9	Ranking order relating physico-chemical properties for Glip SLNs different formulae.	70
Table 10a	In-vitro release of Glip- SLNs different formulae.	71
Table 10b	Calculation of t50 and t90 for the in-vitro release of Glipizide from different SLN formulations and their ranking order.	73
Table 11	Kinetic treatment of the release data of GlipSLNs different formulae	76
Table 12	Total ranking order for the physico-chemical properties and the in-vitro release data of Glip- SLNs different formulae.	77
Table13	Average change in blood glucose level with time for different groups of rats treated with Glip. at first day from starting treatment.	78
Table 14	Average change in blood glucose level with time for different groups of rats treated with Glip. at third day from starting treatment.	78
Table 15	Average change in blood glucose level with time for different groups of rats treated with Glip. at fifth day from starting treatment.	78
Table 16	Average change in blood glucose level with time for different groups of rats treated with Glipizide treatments at seventh day from starting treatment.	79
Table 17	Rate of change in blood glucose level in different rats' groups through seven days.	79
Table 18	The area under curve (AUC) elimination rate constant (K10), lag time (Tlag), maximum concentration (Cmax) and time of maximum concentration (tmax) of Marketed product (Minidiab® 5 mg tablet) and Glip SLNs (SLN 7) after single oral dose.	86

LIST of FIGURES

Figure No.	Title	Page No.
Figure I	Structure of lipid Nano dispersed vehicle systems	4
Figure II	Different methods used in preparation of SLNs.	8
Figure III	SLNs preparation by hot homogenization process	9
Figure IV	SLNs prepared by cold homogenization process	10
Figure V	SLNs prepared by microemulsion method.	11
Figure VI	SLNs preparation by emulsification-diffusion method.	12
Figure VII	Chemical structure of Glip	21
Figure VIII	Type 1 diabetes	26
Figure IX	Type 2 diabetes.	27
Figure 1	Dissolution apparatus In-vitro release of Glipizide from different SLN formulations.	39
Figure 2	Group I. of diabetic rats served as positive control (a), Group III. Received Glipizide SLNs (Formula no. 7) (b).	41
Figure 3	Measuring blood glucose level from tail vein of rats using blood glucose test monitor.	41
Figure 4	Blood samples collected form retro-orbital sinus using capillary tube.	45
Figure 5	Frozen plasma at -20 °C in sodium citrate test tube.	45
Figure 6	HPLC chromatogram of standard Glipizide 10 µg/ml (a), test of Glipizide Solid Lipid Nanoparticles10 µg/ml (b), solution containing the co-formulate adjuvant of Glipizide Solid Lipid Nanoparticles(c).	48
Figure 7	Relationship between the peak area and the concentration of Glipizide (μ g/ml).	49
Figure 8	Transmission Electron Microscope micrograph of SLN 1	50
Figure 9	Transmission Electron Microscope micrograph of SLN 2	50
Figure 10	Transmission Electron Microscope micrograph of SLN 3	51
Figure 11	Transmission Electron Microscope micrograph of SLN 4	51
Figure 12	Transmission Electron Microscope micrograph of SLN 5	52
Figure 13	Transmission Electron Microscope micrograph of SLN 6	52
Figure 14	Transmission Electron Microscope micrograph of SLN 7	53
Figure 15	Transmission Electron Microscope micrograph of SLN 8	53
Figure 16	Mean particle size and PDI of SLN 1	57
Figure 17	Mean particle size and PDI of SLN 2	57
Figure 18	Mean particle size and PDI of SLN 3	58
Figure19	Mean particle size and PDI of SLN 4	58
Figure 20	Mean particle size and PDI of SLN 5	59
Figure 21	Mean particle size and PDI of SLN 6	59
Figure 22	Mean particle size and PDI of SLN 7	60
Figure 23	Mean particle size and PDI of SLN 8	60

Figure 24	Release profile of Glip. from Compritol SLNs formulations (SLN1 - SLN4).	72
Figure 25	Release profile of Glip. from Precirol SLNs formulations (SLN°– SLN ^A).	72
Figure 26	Change in blood glucose level with time for groups one, two and three through seven days	80
Figure 27	Change in blood glucose level with time for different groups through first, third, fifth and seventh day	80
Figure 28	Change in blood glucose level with time for different groups through seven days	81
Figure 29	LC-MS chromatogram of Glip- SLNs versus Gliclazide internal standard in plasma.	83
Figure 30	Relationship between the area ratio and the concentration of Glip. – SLNs in plasma (ng/ml).	84
Figure 31	plasma level time curve of orally administered Glip. Marketed product (Minidiab® 5 mg tablet) in rats.	85
Figure 32	Plasma level time curve of orally administered Glip-SLNs (SLNs) in rats.	85

LIST of ABBREVIATIONS or SYMBOLS

Abbreviation	Whole name
AUC	Area under the curve
BCS	Biopharmaceutical classification system
Cmax	Maximum concentration
Conc.	Concentration
D.I.	De ionized
dl	Deciliter
% DC	Percent drug content
DLLST	Dynamic laser light scattering technique
DMF	dimethylformamide
% DL	Percent drug loading
E	Rates of change in blood glucose level with time
% E E	Percent Entrapment Efficiency
Glip.	Glipizide
GTT	Glucose tolerance testing
HLB	Hydrophilic-lipophilic balance
HSH	High shear homogenization
HPLC	High performance liquid chromatography
HPMC	Hydroxypropyl Methylcellulose
hrs.	Hours
IU	International Unit
K	Rate constant
K_{10}	Elimination rate constant (K10)
LC-MS-MS	Liquid Chromatography Mass Spectrometry
LOD	limit of detection
LOQ	limit of quantitation
μg	Microgram
μl	Microliter
M.P.	Melting Point
mV	Millivolt
ng	Nanogram
PCS	photon correlation spectroscopy
PDI	Polydispersity index
PRBA	Percentage relative bioavailability
PS	particle size
PTA	Phosphotungistic acid
% PY	Percentage production yield
r Durun	correlation coefficient
Rpm	Round per minute
SD SI No	Standard deviation
SLNs	Solid Lipid Nanoparticles
SLN 7	Formula no. 7
STZ	Streptozotocin Half life
t _{1/2}	Half-life
t ₅₀	Time taken to release 50% of Glip. (Hours)

xiii

t ₉₀	Time taken to release 90% of Glip. (Hours)
TEM	Transmission Electron Microscope
t max	Time of maximum concentration
R	Trade Mark
USP	United states pharmacopeia
UV	Ultra violet
ZP	Zeta potential (ξ)

Design, preparation and evaluation of Glipizide solid lipid nanoparticles for improving its oral bioavailability

١

By

Eman Gamal Mokhtar

Supervisor

Dr. Jamal Alyoussef Alkarrad

ABSTRACT

The main aim of the present thesis is to develop Glipizide solid lipid nanoparticles (Glip-SLNs) for improving its bioavailability, therapeutic efficacy and increasing duration of action. Eight different formulae of Glip. -SLNs were produced by HSH and sonication technique. Solubility study was performed on different lipids including Beeswax, Compritol® 888 ATO, Precirol® ATO 5 and stearic acid to identify appropriate lipids for formulation of Glip.-SLNs. Particle size, PDI, zeta potential, %DC, %EE, %DL, % PY and in-vitro release parameters (t50 and t90) were taken as responses to detect the optimized formula. The results indicated solubility of Glip. in Compritol[®] 888 ATO and Precirol[®] ATO 5 which have low Hydrophilic-lipophilic balance (HLB). A valid HPLC method for analysis of Glip- SLNs showed the retention time of Glip. was 4.1 min. and the method was linear over a range of 1-20 μ g/ml. Formula (SLN7) which composed of precirol as lipid base, span 60 as lipid surfactant, lutrol F 127 as aqueous surfactant and methocel E5 (1%) as viscosity increasing agent was the optimized formula. Particle size, PDI, ZP, % DC, % EE, % DL, % PY, t₅₀ and t₉₀ for optimized formula were 217 nm, 0.307, -13.80 mV, 99.29 %, 93.45%, 60.32%, 95.82%, 17.68 hrs. and 31.75 hrs. respectively.

On comparing oral bioavailability of Glip- SLNs (SLN7) with marketed product (Minidiab[®] 5 mg tablet) as tested by the rate of change in blood glucose level (E) in wistar rats after single oral dose, the bioavailability of (SLN7) has 2.50 folds increase than marketed product. Results of Liquid Chromatography Mass Spectrometry (LC-MS) for analysis of SN7 and marketed product in plasma of wistar rats showed percentage relative bioavailability (PRBA) of Glip. - SLNs (SLN 7) in comparison to marketed product (Minidiab[®] 5 mg tablet) was 413.00 %.