

IMPACT OF ISONIAZID AND/OR RIFAMPICIN ON CHEMOKINES AND CLINICAL PARAMETERS LEVEL IN TUBERCULOSIS PATIENTS

Prepared by Ali Odeh

Supervised by Dr. Taghreed Altaei

A Thesis

Submitted to Faculty of Pharmacy as a Partial Fulfillment of the Requirement for Master Degree in Pharmaceutical Science

2019

التفويض نموذج

أنا علي عوده، أفوض جامعة الاسراء بتزويد نسخ من رسالتي /أطروحتي للمكتبات أو المؤسسات أو الهيئات أو الأشخاص عند طلبهم حسب التعليمات النافذة في الجامعة. التوقيع:

التاريخ: 1/ ٩/٩

The Isra University Authorization Form

I, Ali Odeh, authorize the Isra University to supply copies of my Thesis/Dissertation to libraries or establishments or individuals on request,according to the Isra University regulations.

Signature:

Date:

COMMITTEE DECISION

This Thesis (Impact of Isoniazid and/or Rifampicin on chemokines and clinical parameters level in tuberculosis patients) was Successfully Defended and Approved on -----

Examination Committee

Signature

Dr. Taghreed Altaei, (Supervisor) Ass. Prof. of Pharmacology and Toxicology

Dr. Amjad Abu Rmela, (Member) Assoc. Prof. of Pharmacology

Dr. Karim Alzoubi, (Member)

Prof. of Pharmacology

(Jordan University of Sciences and Technology)

التفويض نموذج

أفوض جامعة الاسراء بتزويد نسخ من رسالتي /أطروحتي للمكتبات أو المؤسسات أو الهيئات أو علي عوده، أنا الأشخاص عند طلبهم حسب التعليمات النافذة في الجامعة.

التوقيع:

التاريخ:

The Isra University Authorization Form

I, Ali Odeh, authorize the Isra University to supply copies of my Thesis/ Dissertation to libraries or establishments or individuals on request, according to the Isra University regulations.

Signature:

Date:

COMMITTEE DECISION

This Thesis (Impact of bioavailability of isoniazid and /or rifampicin on chemokines level in tuberculosis patients) was Successfully Defended and Approved on ------

Examination Committee

Signature

Dr. Taghreed Altaei, (Supervisor) Ass. Prof. of Pharmacology and Toxicology

Dr. Amjad Abu Rmela, (Member) Assoc. Prof. of Pharmacology

Dr. Karim Alzoubi, (Member) Prof. of Pharmacology (Jordan University of Sciences and Technology)

DEDICATION

I present this article to the great man my father (ENG.AHMAEDODEH) who support me in every time and the beautiful lady my mother and my special friend my brother and to my sisters.

AKNOWLEDGEMENT

First, I really appreciate the efforts of the university president and Dean of the Faculty of Pharmacy and the teaching staff, especially my supervisor Dr Taghreed Altaei, I would also like to thank the center of the Chest and health of expatriates in Amman, represented by Dr. Khalid Okeh, Dr. Ahmed Abu Rumman, Alaa Al Masri, Alaa Al Rhaifah, Khalid Abu Hatab, Du'aa Fritakh, Reem Abu Al Jibat, Hajar Alayan and Samar Sarhan, And the center of the Chest and the health of expatriates in Madaba Sakina Al-Shawabkeh and the important role of the Jordan anti Tuberculosis respiratory disease society Samia Shafei. and the external efforts that were made by Dr. Abdullah Nasr and pharmacist Nermin Karajah and Farah Al-Mamouri.

TABLE OF CONTENTS

COMMITTEE DECISION	II
DEDICATION	III
AKNOWLEDGEMENT	IV
TABLE OF CONTENTS	V
LIST OF TABLES	VII
LIST OF FIGURES	VIII
LIST OF ABBREVIATIONS	X
ABSTRACT	XIII
CHAPTER ONE: INTRODUCTION	1
1.1. The objective of the study	3
CHAPTER TWO: REVIEW OF LITERATURE	4
2.1. Tuberculosis	4
2.1.1. Pathogenesis	6
2.1.2. Risk factors	12
2.1.3. Vaccination	15
2.1.4. Treatment of TB	16
2.1.5. Therapeutic Drug Monitoring	24
2.2. Chemokines	24
2.2.1. Chemokine function	26
2.2.2. Chemokine signaling	28
2.2.3. Chemokine Homeostasis	
2.2.4. Chemokine in Inflammation	
2.2.4. CXCL8 Chemokine	30

CHAPTER THREE: PATIENTS AND METHODS	34
3.1. Materials:	34
3.2. Instruments	35
3.3. Methods	35
3.3.1. Study design	35
3.3.2. Patients	36
3.3.3. Laboratory Testing	36
3.3.4. Human Chemokine IL-8/CXCL8 Immunoassay ELISA	37
3.3.5. Patient Monitoring During Treatment	39
3.3.6. Adherence/Compliance & Treatment Follow-Up.	40
3.4. Statistical analysis	40
CHAPTER FOUR: RESULTS	41
4.1. Patients	41
4.1.1 Evaluation of serum chemokine in TB patients	42
4.1.2 Evaluating the effects of administered drugs on studied parameters	45
	50
4.1.3 The Correlation of chemokine to the studied parameters	
4.1.3 The Correlation of chemokine to the studied parameters4.1.4 Patient monitoring during treatment, post-treatment follow-Up, and Adherence.	
4.1.4 Patient monitoring during treatment, post-treatment follow-Up, and	53
4.1.4 Patient monitoring during treatment, post-treatment follow-Up, and Adherence.	53 5 4
4.1.4 Patient monitoring during treatment, post-treatment follow-Up, and Adherence	53 54 60
 4.1.4 Patient monitoring during treatment, post-treatment follow-Up, and Adherence. CHAPTER FIVE: DISCUSSION CHAPTER SIX: CONCLUSION 	53 54 60 61

LIST OF TABLES

No.	TABLE CAPTION	PAGE
1	The materials used in this study with manufacturer and origin	34
2	The instruments used in this study with manufacture and origin	35
3	Demographic and clinical characteristics of enrolled TB patients	42
4	Two Way ANOVA for chemokine level in pulmonary & extra- pulmonary TB patients	43
5	Comparison between pulmonary and extra pulmonary in hematology parameters	47
6	Comparison between pulmonary and extra pulmonary in liver function parameters	48
7	Comparison between pulmonary and extra pulmonary in kidney function parameters	49

LIST OF FIGURES

No.	FIGURES CAPTION	PAGE
1	Initial infection of MTB	5
2	Chest X-ray showing (A) parenchymal destruction and fibrotic lesions in the bilateral upper lungs. (B) Chest X-ray showing newly developed infiltrative lesions in the right lung field	7
3	Development stages of the granuloma	11
4	Drug resistance of TB disease	15
5	Different tuberculosis vaccination strategies	16
6	The concentration of INH in the blood plasma for fast and slow acetylation	21
7	Human Chemokine IL-8/CXCL8 Immunoassay ELISA kit	37
8	Standard dilution of Human Chemokine IL-8/CXCL8 Immunoassay ELISA	39
9	Human Chemokine IL-8/CXCL8 microplate	39
10	Serum level of chemokine (Pre-& Post) in pulmonary and extra-pulmonary TB patients	43
11	TOW WAY ANOVA for CXCL8 before and after taking the treatment in pulmonary and extra pulmonary TB	44
12	ROC analysis of serum chemokine in pulmonary and extra- pulmonary TB patients	Error! Bookmark not defined.
13.A	The serum levels of WBCs, neutrophil, lymphocytes, and monocytes in pulmonary and extra-pulmonary TB patients	45
13.B	The serum levels of MCV, MCHC, MCH, PCV, and Hb in pulmonary and extra-pulmonary TB patients	46
14	The serum levels of liver function tests in pulmonary and extra-pulmonary TB patients	47
15	The serum levels of kidney function tests in pulmonary and extra-pulmonary TB patients	49

16.A	The Scatter plot correlation of serum chemokine to the Neutrophils, Lymphocytes, Monocytes, WBCs in pulmonary TB patients	50
16.B	The Scatter plot correlation of serum chemokine to the Neutrophils, Lymphocytes, Monocytes, WBCs in extra- pulmonary TB patients	51
17.A	The Scatter plot correlation of serum chemokine level to liver function tests in pulmonary TB patients	51
17.B	The Scatter plot correlation of serum chemokine level to liver function tests in extra-pulmonary TB patients	52
18.A	The Scatter plot correlation of serum chemokine level to Kidney function tests in pulmonary TB patients	52
18.B	The Scatter plot correlation of serum chemokine level to Kidney function tests in extra-pulmonary TB patients	53

LIST OF ABBREVIATIONS

NUMBER	Symbols	
1	7TM	7 transmembrane
2	ALP	Alkaline phosphatase
3	ALT	Alanine aminotransferase
4	AST	Aspartate aminotransferase
5	ATB	Active pulmonary tuberculosis
6	AUC	Area under the curve
7	BCG	Bacillus Calmette–Guérin
8	BLT1	leukotriene B4 receptor 1
9	BUN	Blood Urea Nitrogen
10	CAR	CXCL12 abundant reticular
11	CB2	cannabinoid receptor 2
12	CDC	Centers for Disease Control and Prevention
13	CMI	Cell mediated immunity
14	CTL	Cytotoxic CD8+ T lymphocytes
15	CYSLT1	Cysteinyl leukotriene receptor 1
16	DC	Dendritic cell
17	DM	Diabetes mellitus
18	EMA	European Medicines Agency
19	EMB	Ethambutol
20	EPTB	Extrapulmonary tuberculosis
21	FDA	Food and Drug Administration
22	G-CSF	Granulocyte-colony stimulating factor
23	GDP	Guanosine diphosphate

GIT	gastrointestinal tract
GPCRs	G-protein coupled receptors
GPI	Glycosylphosphatidylinositol
GRKs	G protein-coupled receptor kinases
GTP	Guanosine triphosphate
GUTB	Genitourinary tuberculosis
HIV	Immunodeficiency Virus Human
IFN-γ	interferon-γ
INH	Isoniazid
iNOS2	Inducible nitric oxide synthase
JAK- STAT	Janus kinase-signal transducer and activator of transcription
LAM	Lipoarabinomannan
LNTB	Lymph node tuberculosis
LTα	lymphotoxin α
MAC	Macrophages
MDR-TB	Multidrug-resistant tuberculosis
МО	Monocytes
Mtb	Mycobacterium tuberculosis
NKC	Natural killer cells
NKT	Natural killer T
NO	Nitric oxide
NRAMP1	Natural resistance-associated macrophage protein 1
PNG	Polymorphonuclear granulocytes
PPD	Purified protein derivative
PUO	Pyrexia of unknown origin
	GPCRs GRI GRKs GTP GTP GTP GTP GTN GTN GTN GTN GTN GT GT GT GT GT GT GT GT GT GT GT GT GT

49	PZA	Pyrazinamide
50	RIF	Rifampicin
51	S1P1	Sphingosine-1-phosphate receptor 1
52	SM	Streptomycin
53	ТВ	Tuberculosis
54	TBM	Tuberculosis meningitis
55	TNF-α	tumor necrosis factor alpha
56	TST	Tuberculin skin test
57	VD	Volume of distribution

IMPACT OF ISONIAZID AND/OR RIFAMPICIN ON CHEMOKINES AND CLINICAL PARAMETERS LEVEL IN TUBERCULOSIS PATIENTS

By Ali Odeh

Supervisor Dr. Taghreed Altaei, Ass. Prof.

ABSTRACT

Tuberculosis (TB) is one of the most serious diseases that have been founded in ancient times and discovered even in the ancient Egyptian mummy. There are great challenges were faced by the medical staff like an early diagnosis and follow-up the improvement of patient's health. Assessment priorities of response to treatment regimen include both monitoring of treatment-induced adverse events, and estimation of biomarkers for treatment response in pulmonary and extra-pulmonary tuberculosis, which is important for the success of treatment.

Forty tuberculosis patients of pulmonary and extra-pulmonary were subjected to this study. Blood samples of TB patients were screened for serum biomarkers; Chemokine, Hematology; Hb, Monocytes, Lymphocytes, Neutrophils, WBCs, MCV, MCHC, MCH, PCV. Liver function tests; Aspartate aminotransferase, Alanine aminotransferase, Alkaline phosphatase, Bilirubin, Albumin. Kidney function tests; Creatinine, Urate, and Blood Urea Nitrogen, and the correlation between the parameters were measured for all. The monitoring and follow-up of all enrolled TB patients were assessed for the presence of any adverse effects, and the compliance/adherence to treatment by Isoniazid 300 mg/kg, and Rifampicin 600 mg/kg were recorded during the study period.

The results of this study showed that the percentage of pulmonary was 55%, and 45% of extra-pulmonary tuberculosis, total female to male percentage ratio was 42:58.

A significant difference was recorded between pulmonary and extra-pulmonary patients of the serum chemokine CXCL8 after one and two months of the treatment by Isoniazid and/or Rifampicin, the serum CXCL8 was increased in pulmonary and decreased in extrapulmonary TB patients. Studies of the clinical parameters showed that the mean values of liver enzymes were very high in the pulmonary TB patients; AST and ALT were 90.22, 71.22, respectively. A significant difference was noticed in the levels of AST, and ALT between pulmonary and extra-pulmonary tuberculosis. Kidney function parameters showed a difference in creatinine level between the two studied groups.

Conclusion of this study described that chemokines play a role in mediating an effective immune-modulatory role during the treatment of TB infection, suggesting that such assessment may be useful for therapeutic efficacy of Mycobacterium tuberculosis infection and the therapeutic drug monitoring for the compliance to TB treatment. Also, the role of the pharmacist in the education of TB patients about their adherence to therapy to get maximum therapeutic efficacy and outcomes.