

Cost Estimation for Iraqi School Building Projects Using Artificial Neural Network

By

Mustafa Adnan Dawood

B.Sc. (Civil Engineering, 2016)

Supervised by

Associate Prof. Dr. Mohammad Zakaria Siam

This Thesis was submitted in Partial Fulfilment of the Requirements for the Master's Degree in Engineering Project Management

Faculty of Engineering

Isra University

Amman-Jordan

Authorization Form

I, Mustafa Adnan Dawood, authorize Isra	
to libraries or establishments or individuals o	
Signature:	Date:

Committee Decision

This thesis (Cost Estimation for Iraqi School Building Projects Using Artificial Neural Network) was successfully defended and approved on (5-5-2019)

Examination Committee	Signature
Associate Prof. Dr. Mohammad Zakaria Siam (Supervisor) Al Isra University	
Associate Prof. Dr. Ibrahim A. Mohammed (Member) Al Isra University	
Associate Prof. Dr. Bashar Khaled Tarawneh (Member) The University of Jordan	
Al-Isra University Amman-Jordan	

DETECTION

To the first word to pronounce my tongue in the life (my dear Father & dear mother), to those who I cannot speak about them who supported me in my studies (my dear wife and my sons), to my brothers.

Mustafa Adnan Dawood,

ACKNOWLEDGEMENT

First of all, I am grateful and thankful to Almighty God for all the blessings in my

life and for giving me the power, courage and determination in each step of my life to

continue achieving my goals.

I would like to express my great appreciation to my supervisors, **Dr. Mohammad**

Zakaria Siam, for his patient guidance, enthusiastic, encouragement and useful evaluations

of this work. It is really a great pride to be one of his students and to have the opportunity to

be under his supervision.

I would like to thank the leaders in my research, **Dr. Khalid Al-Janabi**, **Dr. Ibrahim**

A .Mohammed and Eng. Mussab Faleh Hassan, for the moral support and encouragement

they have given me. they are truly an example of teachers, who have always concerned me

in all stages of this research.

I thank my family and everyone who supported me, I thank all my friends, especially

Eng. Ali Nafea Nuri, who has always been the best friend, good brother and good

opinionated and he supported me in almost of data used in this research.

Thank you,

Mustafa Adnan Dawood

IV

LIST OF CONTENTS

AUTHO	RIZATION FORMI	
COMMI	TTEE DECISIONII	
DETECT	TIONIII	
ACKNO	WLEDGEMENTIV	
LIST OF	CONTENTS	
LIST OF	FIGURESIX	
LIST OF	TABLES X	
LIST OF	EQUATIONSXI	
LIST OF	ABBREVIATION 1	
ABSTRACT		
CHAPTER ONE3		
INTROL	DUCTION3	
1.1	Introduction	
1.2	PROBLEM STATEMENT	
1.3	RESEARCH AIM AND OBJECTIVES	
1.4	RESEARCH HYPOTHESES	
1.5	RESEARCH JUSTIFICATION	
1.6	RESEARCH METHODOLOGY	
1.7	THESIS OUTLINE 9	
CH A	APTER TWO 10	

LITER	RATURE REVIEW	10
2.1	LITERATURE REVIEW AND PREVIOUS STUDY	10
C	CHAPTER THREE	16
ARTII	FICIAL NEURAL NETWORK- BASIC CONCEPTS	16
3.1	Introduction:	16
3.2	ARTIFICIAL NEURAL NETWORKS (ANNS):	17
3.3	APPLICATIONS OF NEURAL NETWORKS	18
3.4	ARTIFICIAL NEURAL NETWORKS STRUCTURE AND OPERATION:	19
3.5	Transfer Functions	22
3.6	NEURAL NETWORKS LEARNING (TRAINING):	23
3.7	NEURAL NETWORKS TAXONOMIES:	23
3.	.7.1 Single Artificial Neuron (The Perceptron):	25
3.	.7.2 Single Layer Artificial Neural Networks (SLANNs):	26
3.	.7.3 Multi-Layer Artificial Neural Networks (MLANNs):	27
3.8	THE ERROR BACK-PROPAGATION:	28
3.	.8.1 Algorithm of Error Back-Propagation:	30
3.9	STATISTICAL MODELS:	32
3.10	APPLICATION OF ARTIFICIAL NEURAL NETWORK (ANN) IN ENGINEE	ERING
NAGEME	ENT 33	

	CH	IAPTER FOUR	36
	DATA A	ANALYSIS AND MODELING OF COST USING ARTIFICIAL	
NEUI	RAL NET	TWORKS	36
	4.1	Introduction	36
	4.2	METHOD OF DATA COLLECTION:	37
	4.3	DISTRIBUTION DATA AMONG YEAR OF AWARD	37
	4.4	DATA COLLECTION FOR SCHOOL BUILDINGS	37
	4.5	Unit Cost Estimation	38
	4.6	Data Acquisition	38
	4.7	BUILDING ANN MODEL	40
	4.7	'.1 Neuframe Program	40
	4.7		
	4.7		
	4.7		
	4.7		
	4.7	7.6 ANN Model Final Equation	
	4.7		
	4.7	7.8 Parameter Testing of ANN Model	58
	4.7	7.9 Validity and Verification of the ANN Model Equation	59
	CH	HAPTER FIVE	61
		LUSIONS AND RECOMMENDATIONS	

	FERENCES:	
APPENDIX (B)		R.1
AP	PENDIX (A)	A-1
5.3	SUGGESTED FUTURE STUDIES	63
5.2	RECOMMENDATIONS	62
5.1	Conclusions	61

LIST OF FIGURES

Figure 1.1: Research methodology chart
Figure 2.1: Low-rise Prefabricated Structural Steel Building
Figure 3.1: Model of McCulloch and Pitts
Figure 3.2: Simplified scheme of biological neurons
Figure 3.3: Operations and Typical Structure of ANNs
Figure 3.4: The Logistic Sigmoid and Hyperbolic Tangent Transfer Functions 22
Figure 3.5: Neural Networks Taxonomies (based on input and training rules) 24
Figure 3.6: Neural Networks Taxonomies (based on network structure and training
strategy)24
Figure 3.7: The Perceptron
Figure 3.8: Single Layer Neural Network26
Figure 3.9: Multi-layer Neural Network
Figure 3.10: Error Back-Propagation Algorithm29
Figure 4.1: Typical Neuframe 4 program components41
Figure 4.2: RMSE% vs. no. of hidden layer nodes in the model
Figure 4.3: Relative impact of the work items on the model 55
Figure 4.4: Structure of the optimal ANN model55
Figure 4.5: Observed vs. Predicted final cost school building model 60
Figure 4.6: Generalization of the ANN model construction cost school building 60

LIST OF TABLES

Table 4-1: Input data based on the bill of quantity	40
Table 4-2: Performance of ANN model related to alternatives division	43
Table 4-3: The adopted for ANN model Input and output statistics	45
Table 4-4: Hypothesis test for model ANN input / output variables	46
Table 4-5: Number of nodes in hidden layer effect on the performance of model	48
Table 4-6: Momentum term effects on the performance of model	50
Table 4-7: Learning rate effect on the performance of model	51
Table 4-8: Transfer functions effect on the performance of model	52
Table 4-9: Threshold levels and weights connection of model	53
Table 4-10: Employing Garson's algorithm technique on the model	54
Table 4-11: Case number (1 and 4) in Spare Data	57
Table 4-12: Statistical tests results for ANN model	59

LIST OF EQUATIONS

Eq. 3-1
Eq. 3-2
Eq. 3-3
Eq. 3-4
Eq. 3-5
Eq. 3-6
Eq. 3-730
Eq. 3-8
Eq. 3-9
Eq. 3-10
Eq. 3-11
Eq. 3-12
Eq. 3-13
Eq. 3-14
Eq. 4-144
Eq. 4-2 56
Eq. 4-3 56
Eq. 4-456
Eq. 4-5 56
Eq. 4-6 56
Ea. 4-756

Eq. 4-8	56
Eq. 4-9	58
Eq. 4-10	58
Eq. 4-11	58
Eq. 4-12	58

LIST OF ABBREVIATION

AI Artificial Intelligence

ANN Artificial Neural Network

 θ_i Bias or Threshold for Node j

d_k Desired Output of Neuron K

I_i Activation Level of Node j

MAPE Mean Absolute Percentage Error

NN Neural Network

PE Processing Element

SSE Sum Square Error

R Correlation Coefficient

R² Coefficient of Determination

MPE Mean Percentage Error

RMSE Root Mean Squared Error

AA% Average Accuracy Percentage

RBNN Radial Basis Neural Network

SPSS Statistical Package Society Science

TANSIG Hyperbolic Tangent Transfer Function

W_{ij} Connection Weight between Node i and j

W_{jk}(n) Weight Correction

W_{jk}(n-1) Previous Weight Correction

X_i Inputs

Y_j Output of Node j

η Learning Rate

α Momentum Term

δ The Error Back propagation

CECPSB Cost Estimation of Construction Project (schools buildings)

Cost Estimation in a Construction Project Using Modern Intelligent Techniques

By

Mustafa Adnan Dawood

Abstract

The actual final cost of public-school building projects, like other construction projects, is unknown to the owner till the final account statement is prepared. An attempt to estimation the final cost of such projects before work starts, using Neural Network analysis technique is carried out. The study covers (12 & 18 classes) school projects awarded by the lowest bid system, they were obtained by the UNDP, Anbar Provincial Education Directorate and Anbar Reconstruction Fund Committee. Records of (60) school projects completed during (2010-2018) are employed to develop and verify the model. The most important part of the tender documentation for school building, upon which the preliminary estimate of cost is based on the bill of quantities, works were divided into ten groups are considered to have the most significant impact on the final cost. Hence, they are used as model input parameters. These groups are site works, concrete works, "windows, doors and steel works", "plastering and painting works" tiling works, sanitary works, fire extinguisher, Electrical works, outer works, and numbers of classes. It was found that the developed model has the ability to predict the final cost (FC) for school projects, as an output, with a very good accuracy having a correlation coefficient (R) of (98.1%), determination coefficient (R²) of (96.2%) and average accuracy percentage of (99.55%).