Multi-Criterion Multi-Product/ Machine Assignment Problem in Industrial Factories

Prepared By
Ola Riad Sallam

Supervised By
Prof. Dr. Rami A. Maher

This Thesis is Submitted as Partial Fulfillment of the Requirements for The Master's Degree in Engineering Project Management

Faculty of Engineering
Isra University
Amman-Jordan

January 2019
AUTHORIZATION FORM

I, Ola Riad Sallam, authorize Isra University to supply copies of my thesis to libraries or establishments or individuals on request, in accordance to the university regulations.

Signature: Date:
COMMITTEE DECISION

This thesis (*Multi-Criterion Assignment of Multi-Product/Machine Problem in Industrial Factories*) was successfully defended and approved on 10-Jan-2019.

Examination Committee
Prof. Dr. Rami A. Maher (Supervisor)
Al Isra University
Dr. Sofyan M. Hayajneh (Internal member)
Al Isra University
Dr. Yousef Al-Abdallat (External member)
University of Jordan

Signature

Prof. Dr. Rami A. Maher (Supervisor) ………….
Al Isra University

Dr. Sofyan M. Hayajneh (Internal member) …………
Al Isra University

Dr. Yousef Al-Abdallat (External member) …………
University of Jordan
DEDICATION

This humble work is dedicated to my family, teachers, and friends. And to everyone who would need this work to refer to in his/her studying journey.
ACKNOWLEDGMENT

My sincere and deepest acknowledgements are to my supervisor Prof. Dr. Rami A. Maher for his unforgettable continuous full support, patience, and cooperation during this work. Many thanks for his valuable directing and the highly professional advisory.

Many thanks to the management of the factory for being very cooperative and supportive, for giving me the chance to apply my study in their production facility, and for being supportive and patience to provide me with all required data that helped me much in this research.

Many thanks to the examination committee Dr. Sofyan Hayajneh and Dr. Yousef Al-Abdallat for their valuable feedback about this research.

I would like to expand my thanks to all Doctors and Professors who taught me in my educational journey.

Very warm thanks to my friends Lubna Ameireh and Haneen Rasheed for their continuous unconditional support and encouragement.

Special thanks to my aunt Eman Al-Natsheh for her encouragement that motivated me to start the Master’s Journey.

Most importantly, my deepest gratitude goes to my parents Riad Sallam and Maha Al-Natsheh, and my siblings Omar, Oday, Abdullah and Aya; for their endless unconditional love, support, patience, prayers. Thanks for their continues motivation and support throughout my Master’s journey.

Thanks for all who helped me and are not mentioned in this acknowledgement.
ABSTRACT

Multi-criterion Assignment of Multi-product/machine Problem in Industrial Factories

Prepared By

Ola Riad Sallam

The problem of products-to-machines assignment (PMA) is an important concern in industrial factories, and may have a significant impact on the overall cost of the operations. In spite of the problem complications, a primarily approach is to consider suitable product-machine assignment. The importance of solving such a multi-products multi-machine assignment problem increases as the size of the production facility increase; as the problem becomes more complicated when the number of products and machines getting higher. Furthermore, many factors are included in calculating the cost of products add a tedious work. Therefore, dealing with such a problem for a certain case study requires a considerable working time.

In this thesis, an optimization approach is explored to solve the assignment of products in unrelated parallel machines’ environment with an objective function to minimize the overall operation cost. The methodology is to modify the linear programming approach in solving the assignment problem. In addition, criteria affecting the operating cost are defined and transferred to a cost unit to prepare the input matrix for the assignment problem. In specific, the problem is solved using sequential arrangement and parallel arrangement methods.
A real case (a factory for plastic item's production) is studied to verify the proposed solution and to understand the practical side of the management problem. The initial results are discussed with the factory engineers and manager to validate the use of the optimal approach. The interviews' feedback is used to update the optimal solution. As an important result that can be announced is that the actual solution is only suboptimal. This is because incomplete conditions and work constraints are considered; this result indicates the necessity of mixing the prevailing manager rules with theoretical solution methods.
مشكلة التخصيص متعدد المعايير للمنتجات في المعامل الصناعية

إعداد
علا رياض سلام

تعتبر مشكلة تخصيص المنتجات إلى الآلات قضية هامة في المعامل الصناعية، ومن الممكن أن تؤثر بشكل ملحوظ على الكلفة الإجمالية للعمليات التشغيلية. تزداد أهمية ايجاد حل لمشكلة تخصيص المنتجات إلى الآلات باستخدام طريقة منهجية بزيادة حجم المنشأة وزيادة عدد المنتجات والآلات، وزيادة العوامل التي تؤثر على الكلفة التشغيلية، حيث تصبح عملية اتخاذ القرار أكثر صعوبة وذلك لزيادة معطيات المشكلة.

في هذا البحث، تم حل مشكلة تخصيص المنتجات إلى الآلات في بناء الإنتاج التي تتضمن آلات متقلبة غير متماثلة وتحديد تقليل الكلفة الإجمالية المترتبة على تشغيل العمليات. تم حل المشكلة باستخدام خوارزمية مشكلة التخصيص وتم التعديل على طريقة الحل لتناسب مع معطيات المشكلة. تم حل المشكلة باستخدام طريقي الترتيب التسلسلي والترتيب الموتاري.

للتحقيق من الحل الذي تم التوصل إليه في هذا البحث، وفهم الجانب العملي للمشكلة، تم تطبيق دراسة واقعية في مصنع لإنتاج المواد البلاستيكية، وتمت مناقشة النتائج الأولية التي تم الحصول عليها مع مهندسي ومدير المصنع للتحقيق من واقعية الحل. وتم استخدام الملاحظات لتطوير الحل والوصول إلى حل يمكن قبوله عملياً من قبل إدارة المصنع. إحدى النتائج المهمة التي يذكرها أن الحل الأمثل لم يتم قبوله من قبل إدارة المصنع بسبب محددات.

لم يتم اعتبارها من البداية، والحل المقترح هو الحل بديل للحل الأمثل.
LIST OF CONTENTS

1 INTRODUCTION ... 1

1.1 PROBLEM STATEMENT AND RESEARCH MOTIVATION 1

1.2 RESEARCH OBJECTIVES .. 2

1.3 RESEARCH HYPOTHESIS .. 3

1.4 RESEARCH METHODOLOGY ... 3

1.5 RESEARCH CONTRIBUTION ... 4

1.6 THESIS STRUCTURE ... 5

2 LITERATURE REVIEW .. 6

2.1 INTRODUCTION ... 6

2.2 MOTIVATIONS FOR OPTIMIZATION IN INDUSTRIAL FACTORIES 7

2.3 TASK ASSIGNMENT PROBLEM ... 8

2.4 PRODUCTION SCHEDULING AND ASSIGNMENT 11

2.5 DEFINITION OF UNRELATED PARALLEL MACHINES 18

2.6 THE ASSIGNMENT PROBLEM .. 20

2.7 SUMMARY .. 24

3 RESEARCH METHODOLOGY ... 25

3.1 INTRODUCTION ... 25

3.2 PROBLEM STATEMENT ... 25

3.3 METHODOLOGICAL APPROACH ... 26

 3.3.1 Define the differences between variant non-identical machines........ 26

 3.3.2 Derive the factors affecting the operating cost 32

 3.3.3 Convert the deviation as cost factor ... 33

 3.3.4 Data collection procedure ... 35

VIII
3.4 ASSIGNMENT PROBLEM ... 37

3.4.1 Assignment problem model .. 38

3.4.2 Unbalanced assignment problem .. 38

4 DATA ANALYSIS AND RESULTS .. 46

4.1 INTRODUCTION .. 46

4.2 HYPOTHETICAL EXAMPLE OF ASSIGNMENT PROBLEM SOLUTION 46

4.3 A CASE STUDY- A FACTORY OF PLASTIC PRODUCTS 48

4.3.1 Environment of the Production System in the Study Factory 48

4.3.2 Classification and Collection of Input Data 49

4.4 RESULTS OF PRODUCTS-MACHINES ASSIGNMENT 55

4.4.1 Current assignment ... 55

4.4.2 Sequential arrangement method ... 56

4.4.3 Parallel arrangement method ... 57

4.4.4 Comparison between the two solution 58

4.4.5 Capacity of machine to accommodate assigned products 60

4.5 SENSITIVITY ANALYSIS .. 64

4.5.1 Significance of the cost included in factor 65

4.5.2 Increment and decrement of total operating cost 66

4.5.3 Sensitivity of electrical cost ... 68

4.5.4 Sensitivity of labor factor .. 70

4.5.5 Rent cost ... 74

5 CONCLUSIONS AND RECOMMENDATIONS 76

5.1 CONCLUSIONS ... 76

5.2 RECOMMENDATIONS .. 78
5.3 Future Work

5.3.1 Products-machines assignment problem considering machines' depreciation and maintenance costs

5.3.2 Products-machines assignment problem considering machines' capacity and utilization as constraints

5.3.3 Multi-criterion assignment problem with mixed maximization and minimization objectives
LIST OF FIGURES

FIGURE 2-1 PARALLEL MACHINES ENVIRONMENT (REFERENCE: SENTHIL ET AL., 2007) ...19

FIGURE 3-1 OEE MEASUREMENT TOOL AND THE PERSPECTIVE IN PERFORMANCE INTEGRATED IN THE TOOL...30

FIGURE 4-1 COMPARISON BETWEEN THE TWO PROPOSED ASSIGNMENT METHODS COMPARING TO CURRENT SITUATION REGARDING THE NUMBER OF ASSIGNED PRODUCTS ..59

FIGURE 4-2 COMPARISON BETWEEN THE TWO PROPOSED ASSIGNMENT METHODS AND CURRENT ASSIGNMENT REGARDING TOTAL OPERATING COST ..59

FIGURE 4-3 THE CURVE OF ASSIGNMENT COST FOR FACTORS MULTIPLICATIVE66
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>Transferring problem's factors to cost</td>
<td>33</td>
</tr>
<tr>
<td>3-2</td>
<td>Explanation of transferring factors as cost</td>
<td>34</td>
</tr>
<tr>
<td>3-3</td>
<td>List of products versus machines and productions possibilities</td>
<td>36</td>
</tr>
<tr>
<td>3-4</td>
<td>The initial matrix for the assignment problem</td>
<td>37</td>
</tr>
<tr>
<td>3-5</td>
<td>Example of initial unbalanced assignment matrix</td>
<td>39</td>
</tr>
<tr>
<td>3-6</td>
<td>Example of the results of assignment with dummy machines</td>
<td>40</td>
</tr>
<tr>
<td>3-7</td>
<td>Assignment matrix of the second iteration</td>
<td>41</td>
</tr>
<tr>
<td>3-8</td>
<td>Example of initial assignment matrix using the parallel method</td>
<td>42</td>
</tr>
<tr>
<td>4-1</td>
<td>Hypothetical initial assignment matrix</td>
<td>47</td>
</tr>
<tr>
<td>4-2</td>
<td>Results of hypothetical assignment problem using sequential</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>arrangement and parallel arrangement methods</td>
<td></td>
</tr>
<tr>
<td>4-3</td>
<td>Products-machines matrix of the case study factory</td>
<td>50</td>
</tr>
<tr>
<td>4-4</td>
<td>Initial data matrix for the assignment problem</td>
<td>54</td>
</tr>
<tr>
<td>4-5</td>
<td>Products-machines current assignment by the factory</td>
<td>56</td>
</tr>
<tr>
<td>4-6</td>
<td>Assignment results using sequential arrangement method</td>
<td>57</td>
</tr>
<tr>
<td>4-7</td>
<td>Assignment results using parallel arrangement method</td>
<td>58</td>
</tr>
<tr>
<td>4-8</td>
<td>Total operating hours for products-per-machine and total operating hours per</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>each machine</td>
<td></td>
</tr>
<tr>
<td>4-9</td>
<td>Final assignment result with machines' availability of four times</td>
<td>63</td>
</tr>
<tr>
<td>4-10</td>
<td>Summary of the optimum assignment cost through multiple</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>iterations of machines' availability</td>
<td></td>
</tr>
<tr>
<td>4-11</td>
<td>Summary of the effect of problem costs in case if each cost is disabled</td>
<td>65</td>
</tr>
<tr>
<td>4-12</td>
<td>Sensitivity of the assignment when changing the overall cost</td>
<td>67</td>
</tr>
</tbody>
</table>

XII
TABLE 4-13 SENSITIVITY OF THE ASSIGNMENT FOR CHANGING ELECTRICAL COST69
TABLE 4-14 SENSITIVITY OF THE ASSIGNMENT FOR CHANGING THE ELECTRICAL
CONSUMPTION FOR SOME MACHINES ... 70
TABLE 4-15 THE CHANGES IN THE ASSIGNMENT INPUT TO TEST THE SENSITIVITY FOR
CHANGING NUMBER OF LABORS ... 71
TABLE 4-16 SENSITIVITY OF THE ASSIGNMENT FOR CHANGING NUMBER OF LABORS
OPERATING THE MACHINE ... 72
TABLE 4-17 SENSITIVITY OF THE ASSIGNMENT FOR CHANGING LABOR COST 73
TABLE 4-18 SENSITIVITY OF THE ASSIGNMENT FOR CHANGING RENT COST 75
LIST OF ABBREVIATION

PMA: Products-machines Assignment

TAP: Task Assignment Problem

PMS: Parallel Machine Scheduling

AP: Assignment Problem

OEE: Overall Equipment Effectiveness

UPM: Unrelated Parallel Machines

UNB-AP: Unbalanced Assignment Problem

TPM: Total Preventive Maintenance

IMM: Injection Molding Machine