

Rationalization of Energy Consumption in Large Buildings by Using

Technical Methods and Thermal Insulation.

(Case Study: Palestinian Territories)

By

Eng. Anas Khader Ahmed Antari

Supervisor

Dr. Walid M Emar

A Thesis Submitted in Partial Fulfilment of the Requirements for Master

Degree of Science in Engineering projects management

Faculty of Graduate Studies

Isra University

June, 2019

DECISION OF THE DISCUSSION COMMITTEE

This Thesis (Rationalization of Energy Consumption in Large Buildings by Using Technical Methods and Thermal Insulation, (Case Study: Palestinian Territories)) was successfully defended and approved on 11-June-2019.

Examination Committee

Signature

Associate Prof. Dr. Walid M.Emar (Supervisor)	
Isra University	
Amman-Jordan.	
Assistant Prof. Dr. Osama Fares (Member)	
Isra University	
Amman-Jordan	

Prof. Dr. Marwan Al-Nsour (Member) Al Balqa Applied University Amman-Jordan

AUTHORIZATION FORM

I, Anas Khader Ahmed Antari, authorize Isra University to supply copies of my Thesis to libraries or establishments or individuals on request, in accordance to the University regulations.

Signature:

Date:

ACKNOWLEDGMENT

Praise be to Allah, who empowered me to do this research. I am very grateful to my principal supervisor, Dr.Waild Emar for his deep remarkable suggestions and his guidance on my research. He was always friendly and modern in his teaching approach. I would like to extend my thanks to the faculty members who have enriched my knowledge and have added great value to my perspectives of scientific research.

I owe to my parents for their ceaseless support. Unforgettably, I highly value the great sacrifice and support of my sister, Engineer Ahlam Antari and my cousin Maen Antari, which have heightened my determination to pursue this study. As well as contributed tremendously for the successful completion of this work.

I would like to convey my immense thanks and sincere appreciation to my friend Mr Hussen Aydy, who has supported me to pursue my master degree. Also, great appreciation goes to Mr Samer Ahmad for his support during the study period.

TABLE OF CONTENTS

DECISION (OF THE DISCUSSION COMMITTEEI	
AUTHORIZATION FORMII		
ACKNOWL	EDGMENT IIII	
TABLE OF O	CONTENTSIV	
LIST OF TA	LIST OF TABLESVII	
LIST OF FIG	GURESX	
LIST OF AB	BREVIATIONS XII	
ABSTRACT	XIV	
CHAPTER (DNE: INTRODUCTION1	
1.1	INTRODUCTION1	
1.2	LITERATURE REVIEW	
1.3	RESEARCH PROBLEM	
1.4	RESEARCH HYBOTHESIS	
1.5	Methodology	
1.6	Structure and outline	
CHAPTER 1	TWO: GENERAL SITUATION OF ENERGY IN THE	
PALESTINL	AN TERRITORIES 13	
2.1	POPULATION IN THE PALESTINIAN TERRITORIES	
2.2	ENERGY SECTOR IN THE PALESTINIAN TERRITORIES	
2.3	Power Supply in the Palestinian Territories15	
2.4	ENERGY CONSUMPTION IN PALESTINIAN TERRITORIES	
2.5 Territories	GENERAL STATUS OF RENEWABLE ENERGY SOURCES IN THE PALESTINIAN	
2.6	General Status of Electricity in the Palestinian Territories $\dots 29$	
CHAPTER T	THREE: ENERGY MANAGEMENT PROCEDURES	
IN THE LA	RGE BIULDINDS	
3.1	ENERGY MANAGEMENT CONCEPT AND MEANS (EMO)	
3.2	ENERGY CONSERVATION PROCEDURES IN LIGHTING SYSTEMS41	
3.3	ENERGY CONSERVATION PROCEDURES IN BOILER SYSTEM	
3.4	ENERGY CONSERVATION PROCEDURES IN AIR CONDITIONERS	
3.5	IMPROVE THE POWER FACTOR	

3.6	THERMAL APPLICATIONS BY SOLAR ENERGY	
CHAPTER FOUR: AN OVERVIEW OF THE STATUS OF ENERGY MANAGEMENT IN PALESTINIAN UNIVERSITY		
BUILDINGS	53	
4.1	THE UNIVERSITY SECTOR IN THE PALESTINIAN TERRITORIES	
4.2	Sources of hot water in the university sector	
4.3	CURRENT REALITY OF ENERGY MANAGEMENT IN THE UNIVERSITY SECTOR 56	
4.4	LINKING THEORETICAL REALITY TO PRACTICAL IN PALESTINIAN	
UNIVERSITIES		
CHAPTER H	FIVE : RATIONALIZATION OF ELECTRICAL	
ENERGY (C	CONCEPT, IMPORTANCE AND RESPONSIBILITIES) 60	
5.1	THE STRATEGY OF THE MINISTRY OF ELECTRICITY AND ENERGY TO MEET	
THE DEMAND FO	R ELECTRICITY CONSUMPTION	
5.2	THE CONCEPT OF ELECTRIC POWER CONSUMPTION	
5.3	IMPORTANCE AND BENEFITS OF ENERGY CONSERVATION	
5.4	ENERGY CONSERVATION FROM ECONOMIC PERSPECTIVE	
5.5	ENERGY CONSERVATION FROM RELIGIOUS PERSPECTIVE	
5.6	THE ROLE OF STATE INSTITUTIONS	
5.7	The Role of Government Ministries	
5.8	Role of different ministries	
5.9	CIVIL SOCIETY ORGANIZATIONS	
5.10	The role of the Society and the Individual	
5.11	Role of Renewable energies and energy efficiency	
CHAPTER S	SIX : RATIONALIZATION OF ELECTRICAL ENERGY	
(EFFORTS (OF THE ELECTRICITY SECTOR AND PROCEDURES	
REQUIRED	BY CITIZENS)	
6.1	INTRODUCTION	
6.2	IMPROVING THE ELECTRIC SUPPLY EFFICIENCY	
6.3	RATIONALIZATION OF ELECTRICITY CONSUMPTION	
6.4	GENERAL MEANS AND GUIDELINES FOR THE RATIONALIZATION OF	
HOUSEHOLD ENH	BRGY FOR ELECTRICAL EQUIPMENT AND APPLIANCES	
6.5	RATIONALIZATION OF ELECTRICAL POWER CONSUMPTION OF ELECTRICAL	
EQUIPMENT AND	APPLIANCES IN THE WORKPLACE	

6.6	Rationalization of electricity consumption in lighting systems. 93
	SEVEN: RATIONALIZATION OF ENERGY CONSUMPTION RMAL INSULATION
7.1	INTRODUCTION
7.2	DEFINITION OF THERMAL INSULATION
7.3	THERMAL TRANSFER COEFFICIENT
7.4	THERMAL CONDUCTIVITY COEFFICIENT
7.5	CLASSIFICATION OF THERMAL INSULATION MATERIALS IN TERMS OF FORM,
COMPOSITION AN	ND STRUCTURE
7.6	BASIC CRITERIA FOR THE SELECTION OF THERMAL INSULATION 103
7.7	The quality of the manufacturing of thermal insulation \dots 106
7.8	The economic feasibility of thermal insulation 106
7.9	SOME HEAT-INSULATING MATERIALS AND THEIR ADVANTAGES 106
7.10	COMPARISON OF THERMAL INSULATION MATERIALS IN TERMS OF IN TERMS
OF THE MINIMUM	A THICKNESS TO ISOLATE THE WALLS AND THE MINIMUM THICKNESS OF THE
INSULATION OF T	THE CEILING 113
7.11	FEASIBILITY STUDY OF ENERGY AND MINERALS REGULATORY COMMISSION
BUILDING ISOLAT	rion using Polyethylene
CHAPTER EITHG: CONCLUSIONS AND	
RECOMME	NDATIONS120
8.1	Conclusions
8.2	RECOMMENDATIONS
9 REFEREN	CES 125

LIST OF TABLES

Table 2.1: Selected indicators of the performance of the energy sector in the
Palestinian `territories during the years 2014-2017 15
Table 2.2: Energy Imported in Palestinian Territories in 2017
Table 2.3: Imported energy for the West Bank and Gaza Strip for 2016.
Central Bureau of Statistics
Table 2.4: Household consumption rate in the West Bank for various forms of
energy during the month of January 2015
Table 2.5: Selected indicators of the residential sector in the Palestinian
Territory during the period 2009 - 2015
Table 2.6: Relative Distribution of Households in the West Bank according to the
Types of Energy Used to Heat Water during the Month of January 2015 22
Table 2.7: Relative Distribution of Households in the West Bank according to the
Types of Energy Used to Heat Water during the Month of January 2015 24
Table 2.8: Quantity of electricity available in the Palestinian territories and
their sources during 2010-2017
Table 2.9 : Peak load and power consumption in the main areas of west bank
(estimated)
Table 2.10: GDP in Palestine during 2014 and 201532
Table 2.11: Basic economic indicators for the Palestinian territories for 2016 and
2017
Table 2.12: Electricity Imported and Purchased in the West Bank for 201637
Table 2.13: Average consumer prices for various forms of energy in the West
Bank for 2016

Table 3.1: Standard ratios of excess air and appropriate oxygen volume 43
Table 4.1: Govermental and non-governmental universities located in
the Palestinian territories
Table 6.1: The capacity of some cooling capacities for air conditioners
available in the market
Table 6.2: The limits of the cooling capacity in unit (BTU) depending on the
area in the unit (square meter). Note: 1 kWh = 3415 BTU
Table 6.3: Estimated amount of hot water used. 82
Table 6.4: Estimated amount of water of washing machines with the upper
door
Table 6.5: Comparison of electricity consumption with wash cycle
when reducing the control temperature
Table 6.6: Refrigerator\freezer estimated monthly consumption (kWh) 89
Table 6.7: Refrigerator monthly consumption by size 90
Table 6.8: Freezer monthly consumption by size 90
Table 6.9 : The power of some electrical and electronic devices and standby
Capability
Table 6.10: Maximum permissible optical power density
Table 6.11: The available capacities, amount of light and light efficiency of
incandescent bulbs
Table 6.12: the characteristics of Fluorescent Light Bulbs
Table 6.13: A comparison between the capacity of ordinary lamps and the
equivalent of integrated lamps provided

Table 7.1: Comparison of thermal conductivity coefficients of polyurethane	
with other materials.	. 112
Table 7.2: Comparison of insulation materials in terms of thickness of insulation	sulation
of walls and ceilings	. 113
Table 7.3: The economic analysis.	119

LIST OF FIGURES:

Figure 2.1: Consumption ratios of Palestinian energy sectors for 201519
Figure 2.2: Relative Distribution of Households in the West Bank and a Contribution to
the Availability and Use of Solar Heaters during the Month of January 201523
Figure 2.3: Percentage of households with different means of heating in the West Bank
during the month of January 201523
Figure 2.4: Percentage distribution of families who are preparing bread in various forms of
energy according to each region in the West Bank of the month of January 201525
Figure 2.5: Electricity consumption per capita for a number of Arab countries for 2011.26
Figure 2.6: Monthly wind speeds for the Palestinian territories27
Figure 2.7 : Daily average solar insolation in the west bank
Figure 2.8: Electricity consumption rates for different sectors of the Palestinian territories
for 2011
Figure 3-1: The chart efficiency of the combustion of fuel type 245
Figure 3.2: The chart efficiency of the combustion of fuel type 646
Figure 3.3 : Illustration diagram of the main components of the boiler47
Figure 3.4: Solar heaters used in the residential sector
Figure 4.1: Simplified drawing of thermal insulation54
Figure 4.2: Illustration of the effect of thermal insulation on temperature54
Figure 6.1: Illustration of the ordinary bulb76
Figure 6.2 : IIIustration of fluorescent bulb76
Figure 6.3 : Components of air conditioning unit
Figure 6.4 : Components of the separated air conditioner unit
Figure 6.5: The amount of hot water used for the types of washing machines by size83

Figure 6.6: Quantity of water used (estimated) for washing machines with a upper door.83
Figure 6.7: Electricity consumption values for washing machines when decrease
temperature to 50 °C and 60 °C84
Figure 6.8: Maximum optical power density values for each type of room94
Figure 7.1: Illustrates the form of solid polystyrene panels101
Figure 7.2: Illustrates the form of glass wool panels101
Figure 7.3: Illustrates the form of Polyurethane applied by injection102
Figure 7.4 : Illustrates the form of double glass with Argon gas106
Figure 7.5 : Illustrates the form of expanded polystyrene panels108
Figure 7.6 : Illustration the form of Perlite granules109
Figure 7.7 : Illustrates the form of Foam Polystyrene111
Figure 7.8 : Chemical form of polyethylene115
Figure 7.9: Illustration of polyethylene sheets

LIST OF ABBREVIATIONS

PCBS	The Palestinian Central Bureau of Statistics
PEA	Palestinian Energy Authority
PEC	Palestinian Electricity Company
PERC	Palestine Electricity Regulatory Council
PIPA	Palestinian Investment Promotion Agency
UNCTAD	United Nations Conference on Trade and Development
AUE	Arab Union of Electricity
EE	Energy Efficiency
MEMIP	Mediterranean Energy Market Integration Project
RCREEE	Regional Center for Renewable Energy and Energy Efficiency
CFFT	Complex Finite Fourier Transform
LPG	Liquefied Petroleum Gas
GDP	Gross Domestic Product
JEDCO	Jerusalem Distribution Electric Company
KWh	Kilo Watt Hour
KV	Kilovolt
KVA	Kilovolt Ampere
MW	Megawatt
MWh	Megawatt Hour
GWh	Gigawatt Hour
P. F	Power Factor
IEC	Israeli Electric Company

NGOs	Non-Governmental Organizations
BTU	British Thermal Units
HVAC	Heating, Ventilation, and Air Conditioning
SEEC	Saudi Energy Efficiency Center
CFL	Compact Fluorescent Lamps
HEMS	House Energy Management System
LCCA	Life-Cost Cycle Analysis
LCC	Life-Cost Cycle
PV	Present Value
FV	Future Value
IRR	The Internal Rate of Return
JD	Jordanian Dinar

ABSTRACT:

Electric power is undoubtedly one of the main pillars of economic and social development in modern times worldwide. In Palestine, as in the rest of the world, electric power has great importance; in some cases, it surpasses that of other nations because Palestine is a developing country under occupation aspiring to achieve an economic and social development free from the control of the Israeli occupation. The main objective of this thesis is to establish a pace toward the efficient use of energy and energy management in large or medium buildings through conducting several procedures in some different buildings where lighting, air-conditioning, oxygen generation units, power factor or other service levels can be reduced without detriment to comfort or health care. In this thesis, we will also define the concept and importance of rationalization of electric energy, the efforts of the electricity sector in the rationalization of electrical energy and procedures

Thermal insulation is one of the most important methods of energy conservation in buildings, which contributes to the preservation of the internal heat of buildings for long periods. In this thesis we will present an economic feasibility of thermal insulation, just to apply the economical strategies to determine the best heating and cooling isolation system (using polyethylene isolation materials) from the following alternatives: 1- Isolate all of floors and walls. 2-Isolate the walls. 3-Do nothing (Not use any isolation system) we have chosen a government building where the building consists of five floors, each has a 1950m², according to information obtained from the management of the building, the monthly bill for heating and lighting is 4,000JD. On other hand, 57% of the bill is for heating and cooling system and 43% is for lighting.

The economical engineering strategy that used in this study is life cycle cost analysis life (LCCA). The results show that using the polyethylene isolation materials to isolate walls will decrease the monthly bill to 55% and the IRR will be 16%. On other hand, isolated all walls and floors will decrease the monthly bill to 40% but the IRR will be 13%. The last alternative which is not using isolation were not accepted. Finally, the recommendation is to use alternative two; to save at least 121000 Jordan Dinars over 20 years, while 150000 Jordan Dinars will save if the building isolated all walls and floors over 20 years.