

### Economic Comparison to Develop Historical Street in Traditional and Sustainable Techniques

**Rainbow Street in Amman City – Case Study** 

Prepared By

Hala Al-Hindawi

Supervised By

Dr. Taiseer Rawashdeh

This Thesis was submitted as Partial Fulfillment of the Requirements for the Master Degree of Engineering Project Management (E.P.M.)

> Faculty of Graduate Studies Isra University

> > Dec, 2018

### **DEDICATION**

To Mum and Dad, My Blessing Precious Two,

To my supportive beloved Husband and Daughter,

To my Brothers and the whole family

This work wouldn't be accomplished without you.

### ACKNOWLEDGEMENT

All this research wouldn't be without the helpful guidance of *Dr. Taiseer Rawashdeh* the high moral, hardworking, motivator and devoted professor.
Through all the way of this research he always guided and supported me and always been there whenever I need or ask for help, so from deepest of my heart I wish him the best of health and happiness.

All over this research I can't forget **Dr. Ibrahim Abed Mohammed** for his co-supervision, his help and support in order to accomplish the mission.

I would like to thank **Prof. Reziq Hammad** for providing and giving me the needed information's which belongs to sustainability in architecture.

Also to all who helped me in Jordan Green Building Council and Ministry of Public Works and Housing.

### **Table of Contents**

| Subject    | Page |
|------------|------|
| Dedication | ii   |

| Acknowledgement                               | iii  |
|-----------------------------------------------|------|
| Table of Content                              | iv   |
| List of Photos                                | vi   |
| List of Tables                                | viii |
| List of Appendices                            | ix   |
| Abstract                                      | Х    |
| Chapter One: Introduction                     | 1    |
| 1.1 Architecture effect on tourist attraction | 1    |
| 1.2 Sustainable Architecture                  | 2    |
| 1.3 Problem Statement                         | 5    |
| 1.4 Research Hypothesis                       | 6    |
| 1.5 Research Objectives                       | 6    |
| 1.6 Research Significance                     | 6    |
| 1.7 Thesis Structure                          | 7    |
| Chapter Two: Literature Review                | 8    |
| Chapter Three: Methodology & Data Collection  | 15   |
| 3.1 Area of Study                             | 15   |
| 3.1.1 First Building (Building #1)            | 16   |
| 3.1.2 Second Building (Building #2)           | 19   |
| 3.1.3 Third Building (Building #3)            | 20   |
| 3.1.4 Fourth Building (Building #4)           | 22   |
| 3.1.5 Fifth Building (Building #5)            | 23   |
| 3.1.6 Sixth Building (Building #6)            | 25   |
| 3.1.7 Seventh Building (Building #7)          | 26   |
| 3.1.8 Eighth Building (Building #8)           | 28   |
| 3.1.9 Ninth Building (Building #9)            | 29   |
| 3.1.10 Tenth Building (Building #10)          | 30   |
| 3.1.11 Eleventh Building (Building #11)       | 31   |
| 3.1.12 The Garden                             | 32   |
| 3.2 Data gathering                            | 34   |
| 3.3 Suggested Improvements                    | 39   |
| 3.4 Summary                                   | 43   |
| Chapter Four: Analysis and Discussion         | 44   |
| 4.1 Sustainable Methods Used for Improvements | 44   |
| 4.1.1 Natural Ventilation                     | 45   |
| 4.1.1.1 Wind Catchers                         | 45   |
| 4.1.1.2 Solar Powered Fan                     | 47   |
| 4.1.2 Natural Light                           | 48   |
| 4.1.2.1 Skylight                              | 49   |

| 4.1.2.2 Sun-Portal System                     | 50 |
|-----------------------------------------------|----|
| 4.1.3 Shad and Shadow Devices                 | 51 |
| 4.1.4 Green Roofs                             | 52 |
| 4.2 Improvement Implementation on Buildings   | 53 |
| 4.2.1 First Building                          | 53 |
| 4.2.2 Second, Third, and Fourth Buildings     | 54 |
| 4.2.3 Fifth Building                          | 57 |
| 4.2.4 Sixth Building                          | 58 |
| 4.2.5 Seventh Building                        | 59 |
| 4.2.6 Eighth Building                         | 60 |
| 4.2.7 Ninth Building                          | 61 |
| 4.2.8 Tenth Building                          | 63 |
| 4.2.9 Eleventh Building                       | 64 |
| 4.2.10 Garden                                 | 65 |
| 4.3 Aesthetical Improvements                  | 66 |
| 4.4 Economical Analysis of Improvements       | 72 |
| Chapter Five: Conclusions and Recommendations | 83 |
| 5.1 Conclusions                               | 83 |
| 5.2 Recommendations                           | 84 |
| References                                    | 85 |
| Arabic Abstract                               | ii |

# LIST OF PHOTOS

| Photo 1.1: Natural Ventilation                                                          | 3        |
|-----------------------------------------------------------------------------------------|----------|
| Photo 1.2: Natural Lighting                                                             | 4        |
| Photo 1.3: Shad and Shadow Devices                                                      | 4        |
| Photo 1.4: Green Roofs                                                                  | 5        |
| Photo 3.1: Study Area at Rainbow St. (Google Maps, 2018)                                | 16       |
| Photo 3.2: First Building                                                               | 10       |
| Photo 3.3: First Building Typical Plan                                                  | 17       |
| Photo 3.4: First Building Ground Floor Plan                                             | 18       |
| Photo 3.5: First Building First Floor Plans                                             | 18       |
| Photo 3.6: Second Building                                                              | 18       |
| Photo 3.7: Second Building Ground Floor Plan                                            | 19       |
| Photo 3.8: Second Building First Floor Plan                                             | 20       |
| Photo 3.9: Third Building                                                               | 20       |
| Photo 3.10: Third Building Ground Floor Plan                                            | 20       |
| Photo 3.11: Third Building First Floor Plan                                             | 21       |
| Photo 3.11: Third Building First Floor Plan<br>Photo 3.12: Fourth Building              | 21       |
| Photo 3.12: Fourth Building Ground Floor Plan                                           | 22       |
| Photo 3.13: Fourth Building First Floor Plan                                            | 22       |
|                                                                                         | 23       |
| Photo 3.15: Fifth Building Photo 2.16: Fifth Building Cround Floor Plon                 |          |
| Photo 3.16: Fifth Building Ground Floor PlanPhoto 3.17: Fifth Building First Floor Plan | 24       |
|                                                                                         |          |
| Photo 3.18: Sixth Building Photo 2.10: Sixth Building Crownd Floor Plan                 | 25<br>25 |
| Photo 3.19: Sixth Building Ground Floor Plan                                            | 25       |
| Photo 3.20: Sixth Building First Floor Plan                                             |          |
| Photo 3.21: Seventh Building                                                            | 26       |
| Photo 3.22: Seventh Building Ground Floor Plan                                          | 27       |
| Photo 3.23: Seventh Building First Floor Plan                                           |          |
| Photo 3.24: Eighth Building                                                             | 28       |
| Photo 3.25: Eighth Building Ground Floor Plan                                           | 28       |
| Photo 3.26: Ninth Building                                                              | 29       |
| Photo 3.27: Ninth Building Ground Floor Plan                                            | 29       |
| Photo 3.28: Ninth Building First Floor Plan                                             | 30       |
| Photo 3.29: Tenth Building                                                              | 30       |
| Photo 3.30: Tenth Building Ground Floor Plan                                            | 31       |
| Photo 3.31: Eleventh Building                                                           | 31       |
| Photo 3.32: Eleventh Building Ground Floor Plan                                         | 32       |
| Photo 3.33: The Garden                                                                  | 32       |
| Photo 3.34: The Garden Plan                                                             | 33       |
| Photo 3.35: Division of Land Plots                                                      | 34       |
| Photo 3.36: Special Provisions for Land Plots                                           | 35       |
| Photo 3.37: Sustainability of the Site                                                  | 36       |
| Photo 3.38: The Efficiency of Energy                                                    | 37       |
| Photo 3.39: Internal Health Environment                                                 | 38       |
| Photo 4.1: Summary of Used Improvements                                                 | 44       |
| Photo 4.2: Wind Catcher Functionality                                                   | 46       |

| Photo 4.3: Different Types of Wind Catchers                | 47 |
|------------------------------------------------------------|----|
| Photo 4.4: Sun Path Diagram in summer                      | 48 |
| Photo 4.5: Sun Path Diagram in winter                      | 49 |
| Photo 4.6: Skylights                                       | 50 |
| Photo 4.7: Sun-portal System                               | 51 |
| Photo 4.8: Different Types of Shading Devices              | 52 |
| Photo 4.9: Green Roofs Composition                         | 53 |
| Photo 4.10: First Building before Improvements             | 54 |
| Photo 4.11: First Building after Improvements              | 54 |
| Photo 4.12: Second and Third Buildings before Improvements | 55 |
| Photo 4.13: Second and Third Buildings after Improvements  | 56 |
| Photo 4.14: Fourth Building before Improvements            | 56 |
| Photo 4.15: Fourth Building after Improvements             | 57 |
| Photo 4.16: Fifth Building before Improvements             | 58 |
| Photo 4.17: Fifth Building after Improvements              | 58 |
| Photo 4.18: Sixth Building after Improvements              | 59 |
| Photo 4.19: Seventh Building before Improvements           | 60 |
| Photo 4.20: Seventh Building after Improvements            | 60 |
| Photo 4.21: Eighth Building before Improvements            | 61 |
| Photo 4.22: Eighth Building after Improvements             | 61 |
| Photo 4.23: Ninth Building before Improvements             | 62 |
| Photo 4.24: Ninth Building after Improvements              | 63 |
| Photo 4.25: Tenth Building before Improvements             | 63 |
| Photo 4.26: Tenth Building after Improvements              | 64 |
| Photo 4.27: Eleventh Building before Improvements          | 64 |
| Photo 4.28: Eleventh Building after Improvements           | 65 |
| Photo 4.29: Garden after Improvements                      | 66 |
| Photo 4.30: Aesthetics Improvements on First Section       | 67 |
| Photo 4.31: Aesthetics Improvements on Second Section      | 67 |
| Photo 4.32: Aesthetics Improvements on Third Section       | 68 |
| Photo 4.33: Aesthetics Improvements on Fourth Section      | 68 |
| Photo 4.34: Aesthetics Improvements on Fifth Section       | 69 |
| Photo 4.35: Aesthetics Improvements on Sixth Section       | 69 |
| Photo 4.36: Aesthetics Improvements on Seventh Section     | 70 |
| Photo 4.37: Aesthetics Improvements on Eighth Section      | 70 |
| Photo 4.38: Aesthetics Improvements on Ninth Section       | 71 |
| Photo 4.39: Aesthetics Improvements on Tenth Section       | 71 |

## LIST OF TABLES

| Table Caption                                                                     | Page |
|-----------------------------------------------------------------------------------|------|
| Table 3.1: Summary of Suggested Improvements                                      | 43   |
| Table 4.1: Cost Summary for Each Improvement                                      | 73   |
| Table 4.2: Improvement Costs for Building 1                                       | 73   |
| Table 4.3: Improvement Costs for Building 2                                       | 74   |
| Table 4.4: Improvement Costs for Building 3                                       | 74   |
| Table 4.5: Improvement Costs for Building 4                                       | 74   |
| Table 4.6: Improvement Costs for Building 5                                       | 74   |
| Table 4.7: Improvement Costs for Building 6                                       | 74   |
| Table 4.8: Improvement Costs for Building 7                                       | 75   |
| Table 4.9: Improvement Costs for Building 8                                       | 75   |
| Table 4.10: Improvement Costs for Building 9                                      | 75   |
| Table 4.11: Improvement Costs for Building 10                                     | 75   |
| Table 4.12: Improvement Costs for Building 11                                     | 75   |
| Table 4.13: IRR Value for Each Building                                           | 77   |
| Table 4.14: The Equivalency Year for Each Building                                | 77   |
| Table 4.15: Total Costs of All Buildings in the Study Area                        | 78   |
| Table 4.16: Total Costs of Buildings in the Study Area after Removing Buildings 6 | 79   |
| and 9                                                                             |      |
| Table 4.17: Part of Alternatives (Using Eq. 4.2)                                  | 80   |
| Table 4.18: IRR Calculations for the Different Alternatives                       | 81   |

## LIST OF APPENDICES

| Appendix Caption | Page |
|------------------|------|
| Appendix A:      | 90   |
| Appendix B:      | 94   |
| Appendix C:      | 122  |

#### Economic Comparison to Develop Historical Street in Traditional and Sustainable Techniques

#### Rainbow Street in Amman City – Case Study

By: Hala Al-Hindawi

Supervisor: Dr. Taiseer Rawashdeh

#### <u>Abstract</u>

As a developing country, Jordan suffers from poverty and a lack of energy resources. For these reasons, the focus was turned on the attraction points of public income such as tourist attractions. In addition, the focus on alternative energy resources (renewable energy) became an attracting alternative for traditional energy resources due to the high feasibility obtained economically and environmentally. For this reason, Rainbow Street (one of the most popular streets in Amman for locals and tourists) was selected in this study as a research area to present it in a better architectural way and implementing cheap sustainable systems for buildings located on this street. The aim of this study was to present several sustainable alternatives for the selected area of the study. To achieve the objectives of the study, an economic analysis was performed to check the feasibility of implementing the suggested sustainable improvements. Results of this study showed an expected profit by implementing the improvements in all the buildings with IRR value of 6.9%. However, when removing buildings 6 and 9 from the project (the buildings with negative IRR value) an increase in total IRR of the project can be noticed, with an IRR of 8.37% .The initial cost for the improvements of all buildings was calculated to be \$606,100. Upon using sensitivity analysis in this study, several alternative buildings were selected for improvements with a budget of \$250000. Results of this study recommends using alternative 1 (Improvements on buildings 1, 3, and 4) to achieve the highest economical profit. The resulting IRR for this alternative was the highest with IRR of 10.36%. Another finding from this study was the importance of forcing such sustainable improvements on new buildings by changing the current building codes.

Keywords: Sustainable, Rainbow Street, Economical, Architectural, Re-design.

#### مقارنة اقتصادية لتطوير الشوارع التاريخية بالتقنيات التقليدية والمستدامة

شارع الرينبو مدينة عمان

بقلم : هلا الهنداوي باشراف : د. تيسير رواشدة

#### نبذة مختصرة

تقوم العجله العالميه حاليا بالتسابق على استخدام الطاقه البديله وايجاد حلول منطقيه تعمل على التوفير من كلف الطاقه التقليديه.حيث يعتبر الاردن من الدول الرائده في الشرق الاوسط و العالم العربي لاستخدام الطاقه المتجدده لحاجته الملحه للتقليل من كلف الطاقه الاحفوريه, ومن هنا جاءت هذه الدراسة لتشجيع اصحاب المحلات و المباني التجاريه و امانه عمان الكبرى والبلديات للتركيز على استخدام موارد الطاقة البديلة (الطاقة المتجددة) لخفض الكلف التشغيليه على هذه المشاريع, حيث تم اختيار شارع الرينبو كمنطقة للدراسة في هذا البحث وتقديمها بطريقة معمارية افضل بتنفيذ انظمة الاستدامة الرخيصة على المبانى الموجودة فيها لاعتباريه الشارع تجاريا و سياحيا في عمان.

وللتأكيد على ان تطبيق عناصر و متطلبات الطاقه البدليه ذات فاعليه اقتصاديه، قمنا باجراء تحليل اقتصادي للتحقق من جدوى تنفيذ التحسينات المستدامة المقترحة، تبين ان نتائج هذه الدراسة تعود بمعدل عائد داخلي (Internal Rate Of Return) بنسة 6.9% للجزء الأول من شارع الرينبو (حدود الدراسة). و لرفع هذه النسبه بحيث تكون ذات نسبه اعلى تمت از الة بعض المباني من الدر اسه ذات القيمه السالبه لمعدل العائد الداخلي بحيث تصبح هذه النسبه 88.37% .وتم حساب التكلفة الأولية التقديريه لاستخدام عناصر الطاقه المتجددة و تطبيقاتها لتحسين جميع المباني بتكلفة 606100 دو لأر ، و من ثم تحديد ميز انيه للمشروع مقدار ها 250000 دو لأر ، و عليه تم اختيار عدد من البدائل بحيث يكون المعدل العائد الداخلي اعلى نسبه لمجموعه المباني الموجوده، وكان البديل الأمثل هو تنفيذ المبنى الأول و الثالث و الرابع الذي كان هو اعلى معدل للعائد الداخلي بنسبة 10.361% .ومن اهم نتائج هذه الدراسه ، استخدام تطبيقات الاستدامه و الحسابات الاقتصاديه في مشاريع الطاقه البديليه ، وان لا تكون تطبيقات العرفي الول و الثالث و الرابع الذي كان هو اعلى معدل للعائد الداخلي بنسبة 10.361% .ومن اهم نتائج هذه الدراسه ، استخدام تطبيقات الاستدامه و الحسابات الاقتصاديه في مشاريع الطاقه البديليه ، وان لا تكون تطبيقات نظريه بدون تطبيقات لها ، و فرض قوانين للبناء في الاردن (البلديات وامانة عمان ووزاره الأشغال العامه) .