

Faculty of Engineering

Master Program in Engineering Project Management

Thesis about:

Management of Superpave Asphalt Concrete Mixture in Jordan

Prepared by:

Anas Mohammad Noor Ibrahim Alshurayfeen

Supervisions:

Prof. Dr. Basim Jrew

Associated. Prof. Majed Msallam

This Thesis was Submitted in Partial Fulfilment of the Requirements for the Master's Degree of Engineering Project Management (E.P.M) Faculty of Graduate Studies Isra University

January 2019

Authorization

I, Anas Mohammad Noor Ibrahim Alshurayfeen, authorized Isra University to supply copies of my thesis to libraries or establishment or individual on request, according Isra University regulation.

Signature:

Date:

COMMITTEE DECISION

This Thesis/Dissertation (Management of Superpave Asphalt Concrete Mixture in Jordan) was successfully Defended and Approved on:

Examination Committee Signature

Prof.Dr. Basim Jrew (Supervisor) Prof. of Civil Engineering

Assoc.Dr. Majed Msallam (Co- Supervisor) Assoc. Prof. of Civil Engineering

Prof.Dr. Mohamed Heyasat Prof. of Civil Engineering

Dr. Orabi alrawi Assoc. Prof. of Civil Engineering

Dedication

I dedicate this thesis to my parents who were the cause of completing the study and the source of my insistence also they did not stop supporting me in all economic and moral aspects.

Also I dedicate it to my dear wife who stood with me in all my moments of study and she did not hesitate to support me psychologically and physically.

Finally, Thanks to all my relatives, friends, colleagues and all those who supported me at this stage, I would like to say to them:

"Thank you for your continuous support.... Thank you all.... "

Anas Alshurayfeen

Acknowledgements

I would like to express my sincere appreciation to my thesis committee members for not allowing me to go too far astray during my research efforts. I would like to thank Prof Dr. Basim Jrew for being my thesis supervisor, Dr. Majed Msallam for being my second supervisor and for providing guidance through my research efforts. Finally, I would like to thank my Family for their never ending support, and without their love and support the completion of this research effort and my graduate degree would not have been possible.

Anas Alshurayfeen

Table of Content

Authorization	Ι
Committee Decision	II
Dedication	IIIII
Acknowledgements	IV
Table Of Content	V
List Of Tables	VIII
List Of Figures	XII
List Of Equation	XIIII
List Of Abbreviations	XIIIIII
Abstract	XVV
Chapter One Introduction	
1.1Preface	1
1.2The Scope Of The Study	3
1.3Research Objectives	3
1.4The Hypothesis Of The Study	3
1.5Research Design And Methodology	4
1.6Thesis Structure	6
Chapter Two Literature Review	8
2.1Introduction	8
2.2Hot-Mixed Asphalt (Hma) Concrete	9
2.3Superpave	10
2.2.1Superpave Compaction And Specification	11
2.2.2Performance Grading (Pg)	12
2.2.3Superpave Aggregates Specifications	14
2.2.3.1Superpave Coarse Aggregate Specifications	15
2.2.3.2Superpave Fillers In Hot Mix Asphalt	15
2.2.3.3Aggregate Gradation	16
2.4Marshall Mix Design	19
2.5Superpave And Marshall Method Related Tests	19
2.5.1Specific Gravity	19
2.5.2Los Angles Abrasion And Aggregate Crushing Test	20
2.5.3Air Voids	20

2.5.4Voids In Mineral Aggregate (Vma)	21
2.5.5Voids Filled With Asphalt (Vfa)	22
2.5.6Stability	23
2.5.7Bitumen Effective Content (Pbe)	23
2.5.8Toughness	23
2.5.9Soundness	23
2.5.10Deleterious Materials	24
2.6Literature Review	24
Chapter Three Data Collection And Methodology	
3.1Introduction	29
3.2Scope And Experimental Design	29
3.3Asphalt Binders And Performance Grading (Pg)	30
3.4Modified Marshall Design Method Tests And Results	33
3.4.1Sieve Analysis Test	34
3.4.1.1First Aggregate Categories	35
3.4.1.2Second Aggregate Categories	36
3.4.1.3 Third Aggregate Categories	38
3.4.1.4Fourth Aggregate Categories	40 41
3.4.20ptimum Bitumen Content (Obc)	43
3 4 3Marshall Specific Gravity	44
3 4 4 A ir Voids	45
3.4.5Stability	45
3.4.6Flow	46
3.4.7Voids In Mineral Aggregate	47
3.4.8Stiffness	48
3.4.9Filler/Bitumen Ratio	48
3.5Superpaye Design Method Tests And Results	49
3.5.1 Sieve Analysis Results Aggregate Gradation	51
3.5.1.1Shma#1 Aggregate Categories	52
3.5.1.2Shma#2 Aggregate Categories	54
3.5.1.3Shma#3 Aggregate Categories	56
3.5.1.4Shma#4 Aggregate Categories	58
3.5.1.5Shma#5 Aggregate Categories	60
3.5.2Superpave Gyratory Compactor (Compaction And Specific Gravity)	61
3.5.3Specifications Of Volumetric Design	63
3.5.4Filler/Bitumen Ratio	64

Chapter Four Results And Analysis	
4.1Analysis Of Variance	66
4.2Spss Introduction	67
4.3Normality Of The Data	68
4.4Regression Analysis	68
4.4.1.Model 1 (Specific Gravity)	69
4.4.2.(Air Voids (A. V %))	71
4.4.3.Model 2 (Voids In Mineral Aggregate (V.M.A))	72
4.5Model 3 (Stability)	73
4.6Model 4 (Flow)	75
4.7Model 5 (Stiffness)	77
4.8Model 6 (Filler -Bitumen Ratio)	79
4.9Model 7 (Optimum Asphalt Content For Superpave)	81
4.10Comparing The Results Of Predicted Models With Superpave Criteria	84
4.11Cost Analysis	89
Chapter Five Conclusions And Recommendations	
5.1Conclusion	91
5.2Recommendations	95
References	96
Appendix A	2
Appendix B	34
Appendices C SPSS Analysis	74

List of Tables

Number	Table Caption	Page
Table 2.1	Gyratory Compaction Efforts in Superpave Volumetric Mix Design	11
Table 2.2	Binder Selection Based on Traffic Speed and Traffic Level	12
Table 2.3	Examples of Design Pavement Temperature Adjustments for Slow and Stationary Loads	12
Table 2.4	KDOT Requirements for Consensus Properties of Superpave Aggregates	13
Table 2.5	Superpave mixture size	17
Table 2.6	KDOT Superpave Designed Aggregate Gradations (percentage Retained) for Overlay Projects	17
Table3.1	The sieve analysis sample of first aggregate categories	33
Table 3.2	The sieve analysis sample of Second Aggregate Categories.	34
Table 3.3	The sieve analysis sample of the third Aggregate Categories.	38
Table 3.4	The sieve analysis sample of the fourth Aggregate Categories.	39
Table 3.5	The sieve analysis sample of the fifth Aggregate Categories.	41
Table 3.6	OBC for HMA designed by Marshall Method	43
Table 3.7	Gmm results for HMA designed by Marshall Method	43
Table 3.8	Av% for HMA designed by Marshall Method	44
Table 3.9	Stability results for HMA designed by Marshall Method	45
Table 3.10	Flow results for HMA designed by Marshall Method	46
Table 3.11	VMA% results for HMA designed by Marshall Method	47
Table 3.12	Stiffness results for HMA designed by Marshall Method	47
Table 3.13	Filler/Bitumen Ratio results for HMA designed by Marshall Method	48
Table 3.14	The sieve analysis sample of first SHMA aggregate categories.	52
Table 3.15	The sieve analysis sample of Second Aggregate Categories.	54

Table 3.16	The sieve analysis sample of the third Aggregate	56
Table 3.17	The sieve analysis sample of the fourth Aggregate Categories.	58
Table 3.18	The sieve analysis sample of the fifth Aggregate	60
	Categories	00
Table 3 19	Gmm results for HMA designed by Superpave	61
10010 5.17	Method	01
Table 3.20	OBC for HMA designed by Superpave Method	62
Table 3.21	Av% for HMA designed by Superpave Method	62
Table 3 23	VFA% results for HMA designed by Superpave	63
10010 5.25	Method	05
Table 3 23	VMA% results for HMA designed by Superpave	63
14010 5.25	Method	05
Table 3.24	Filler/Bitumen Ratio results for HMA designed by	63
14010 5.24	Superpave Method	05
Table 3 25	Stability results for HMA designed by Superpave	63
14010 5.25	Method	05
Table 3.26	Flow results for HMA designed by Superpave	64
14010 5.20	Method	04
Table 2 27	Stiffness results for HMA designed by Superpave	64
14010 5.27	Method	04
Table 4.1	Normality test results	67
Table 4.2	Model (1) summary	69
Table 4.3	Regression model (1) coefficients	69
Table 4.4	ANOVA – model (1)	69
Table 4.5	Air Voids Marshall and Superpave	70
Table 4.6	Model (4) summary	71
Table 4.7	Regression model (4) coefficients	71
Table 4.8	ANOVA – model (4)	72
Table 4.9	Model (2) summary	72
Table 4.10	Regression model (2) coefficients	73
Table 4.11	ANOVA – model (2)	73
Table 4.12	Model (3) summary	74
Table 4.13	Regression model (3) coefficients	74
Table 4.14	ANOVA – model (3)	74
Table 4.15	Model (5) summary	75
Table 4.16	Regression model (5) coefficients	76
Table 4.17	ANOVA-model (5)	76
Table 4.18	Model (6) summary	78
Table 4.19	Regression model (6) coefficients	79
Table 4.20	ANOVA – model (6)	80

Table 4.21	Model (7) summary	81
Table 4.22	Regression model (7) coefficients	81
Table 4.23	ANOVA –model (7)	82
Table 4.24	The average percentage error of Voids in Mineral	8/
14010 4.24	Aggregate	04
Table 4.25	The average percentage error of Stability.	84
Table 4.26	The average percentage error of Stability.	85
Table 4.27	The average percentage error of Flow.	86
Table 4.28	The average percentage error of Stiffness.	87
Table 4.29	The average percentage error of Filler- Bitumen	87
	Ratio.	87
Table 4.30	The average percentage error of Optimum Asphalt	88
	Content for Super pave.	00
Table 4.31	Percentage saving and tests price for each design	89
	method type.	09

List of Figures

Number	Figure Caption	Page
Figure 1.1	The research methodology	4
Figure 1.2	the thesis structure	6
Figure2.1	Superpave gyratory compactor (SGC)	10
Figure 2.2	Superpave gradation specifications	16
Figure 3.1	PG distributions in Jordan	31
Figure 3.2	The distributions of aggregate categories # one	36
Figure 3.3	The distributions of aggregate categories # Two	38
Figure 3.4	The distributions of aggregate categories # Three	38
Figure 3.5	The distributions of aggregate categories # Four	41
Figure 3.6	The distributions of aggregate categories # Five	43
Figure 3.7	The distributions of aggregate categories SHMA# 1	52
Figure 3.8	The distributions of aggregate categories SHMA# 2	54
Figure 3.9	The distributions of aggregate categories SHMA# 3	56
Figure 3.10	The distributions of aggregate categories SHMA# 4	58
Figure 3.11	The distributions of aggregate categories SHMA# 5	60
Figure 3.12	figure 3.12 the Gmm% for SHMA#1	62
Figure 4.1	The Graph of the Model (1)	70
Figure 4.1	The Graph of the Model (2)	75
Figure 4.1	The Graph of the Model (3)	76
Figure 4.1	The Graph of the Model (4)	78
Figure 4.5	Normal P-P plot and the histogram of regression	82
rigule 4.5	standard residual.	02
Figure 1.6	Normal P-P Plot and Histogram of Regression	02
Figure 4.6	Standard Residual for Model (7)	63

List of Equations

Equation No.	Equation	Page
2.1	Air Voids	19
2.2	Voids in Mineral Aggregate (VMA)	20
2.3	Voids Filled with Asphalt (VFA)	21
4.1	Analysis of Variance	65
4.2	linear model	66
4.3	Model 1 (Specific Gravity)	68
4.4	Model 2 (Voids in Mineral Aggregate (V.M.A))	71
4.5	Model 3 (Stability)	72
4.6	Model 4 (Flow)	75
4.7	Model 5 (Stiffness)	76
4.8	Model 6 (Filler- Bitumen Ratio)	78
4.9	Model 7 (Optimum Asphalt Content for Superpave)	80
4.10	percentage error	83

List of Abbreviations

AASHTO	American Association Of State Highway And Transportation
	Officials
AGCS	Aggregate Gradation Control System
ANOVA	General Linear Model In Analysis Of Variance
ARZ	Above The Restricted Zone
BBR	Bending Beam Rheometer
BRZ	Below The Restricted Zone
DS	Dynamic Stability
DSR	Dynamic Shear Rheometer
ESALs	Equivalent Single-Axle Loads
FBR	Filler- Bitumen Ratio For HMA Designed By Marshall Method.
Gb	Specific Gravity Of Bitumen
Gmb	Total Density
Gmm	Specific Gravity
Gmm	Maximum Density
Gsb	Bulk Specific Gravity Of Combined Aggregate
Gse	Effective Specific Gravity Of Combined Aggregate,
НМА	Hot-Mix Asphalt
HMA#1	HMA Category Number One
HMA#2	HMA Category Number Two
HMA#3	HMA Category Number Three
HMA#3	HMA Category Designed Using Superpave Method Number Three
HMA#4	HMA Category Number Four
HMA#5	HMA Category Number Five
ITP	Illinois Test Procedures
JPR	Jordan Petroleum Refinery
K-S	Kolmogorov-Smirnov
LOS	Level Of Service
MAS	Maximum Aggregate Size
MDL	Maximum Density Line
NMAS	Nominal Maximum Aggregate Size
OBC	Optimum Bitumen Content
OLS	Ordinary Least-Square

PAV	Pressure Ageing Vessel
Pba	Absorbed Asphalt By Weight Of Aggregate
Pbe	Effective Bitumen Content
PG	Performance Grading
PG	Performance Grading
P-P	Normal Predicted Probability
R	Correlation Coefficients
R ²	Correlation Coefficient
RTFO	Rolling Thin-Film Oven
RZ	Restricted Zone
SG	Specific Gravity
SG	Bulk Oven Dry
SHMA#1	HMA Category Designed Using Superpave Method Number One
SHMA#2	HMA Category Designed Using Superpave Method Number Two
SHMA#4	HMA Category Designed Using Superpave Method Number Four
SHMA#5	HMA Category Designed Using Superpave Method Number Five
SHRP	Strategic Highway Research Program
SMA	Stone Matrix Asphalt
SSD	Bulk SG.
Superpave	Superior Performing Asphalt Pavements
S-W	Shapiro-Wilk
TGC	Texas Gyratory Compactor
TRZ	Through The Restricted Zone
US	United States
VMA	Voids In Mineral Aggregate
Va	Air Voids
VFA	The Voids Filled With Asphalt
VMA	Voids In Mineral Aggregate
WVDOH	West Virginia Division Of Highways
β value	Standardized Coefficients

Abstract

The main objective of this study is to determine the best formula, equation, or module between Marshall Method design and Superpave Method design of coarse aggregate types, which can be used in Superpave Performance Grading (PG) 64-16.

In order to achieve the study aim, five different alternatives of hot mix asphalt for each designed method (Marshall and Superpave design method) were designed, using two different types of commonly used coarse aggregate, which are limestone and Basalt.

A various ratio of coarse aggregate was used starting with 100% of the coarse aggregate being limestone as the first alternative, later 75% of the coarse aggregate is limestone and 25% is basalt for second alternative, this sequence develops until 100% of coarse aggregate is Basalt for the fifth alternative.

Each alternative was tested according to the national specifications and standards; these tests were Air voids, Specific Gravity, Stability, Voids in mineral aggregate, Flow, Filler-Bitumen ratio and Stiffness.

Each test results were analyzed and tested using Normality of the Data, Regression Analysis, t-Test and ANOVA-Test using SPSS version 25.0 software to define the equation between Superpave design method test as dependent variable and Marshall design method test as independent variable.

For Optimum Bitumen Content (OBC) test results, a model of Superpave methods (dependent variable) were designed from the above mentioned tests results of Marshall Method. After that error percentage was calculated for each model/equation, results show that all designed models/equations were within the specifications.

On the other hand, the economical modeling stages shows that using these models/equations will minimize the capital cost of testing cost up to 43%, the results of these modules are so important for Jordan highway projects, they will be introduced to provide optimal cost and optimal design for Asphalt Cement, such as raising the AC layer service lifecycle, flexibility, workability, etc. Finally, some recommendations were listed.

Key words: Marshall, Superpave, Performance Grading (PG), Air voids, Specific Gravity, Stability, Stiffness, Optimum Bitumen Content (OBC), ANOVA-Test.