

Preparation, Characterization, and Antifungal activity of Sertaconazole-Sulfobutyl

i

ether -β-Cyclodextrin Complex

Prepared by

Ashar Abdulsalam Ahmad Alkfaween

Supervised by

Dr. Suha Mujahed Abudoleh

Co-Supervised by

Dr. Hesham Mohamed Twafeek

A Thesis

Submitted to Faculty of Pharmacy as a Partial Fulfillment of the Requirements for

the Master's Degree in Pharmaceutical Sciences

May 2019

أنا أسحار عبد السلام الكفاوين أفوض جامعة الإسراء بتزويد نسخ من رسالتي للمكتبات أو المؤسسات أو الهيئات أو الأشخاص عند طلبهم حسب التعليمات النافذة في الجامعة.

التوقيع:

التاريخ: ٢٣ / ٥ / ٣١

Isra University

Authorization Form

I, Ashar Abdulsalam Alkfaween, authorize Al Isra University to supply copies of my thesis to libraries or establishments or individuals on request, according to the Isra University regulations.

Signature: 15 to

Date: 13/5/2019

COMMITTEE DECISION

This Thesis (Preparation, Characterization, and Antifungal activity of Sertaconazole-sulfobutyl ether $-\beta$ -Cyclodextrin Complex.) was Successful Defended and Approved on the $--\frac{Hay}{2019}$

Examination Committee Dr. Suha Mujahed Abudoleh (Supervisor). Dr. Hesham Mohamed Twafeek (Co-supervisor) Dr. Manal Alnajdawi (Member)

Signature

Dr. Maha Nasr (Mutah University, External Examiner)

Dedication

This thesis is dedicated to my parents, my husband and my lovely family. My parents, the source of my happiness and success in my life, who have always been supportive anytime I needed their support, without them I would have been unable to accomplish this competitive phase of education. To my husband, because of your love, acceptance, patience and encouragement that has been seen through our first year of marriage and my last year of thesis. I will appreciate all you have done for me. To my sisters and my brothers for funny times I spent it with them after feeling tired and frustrated. To my little girl Eleen, my Soul, you are the joy of my life and I love you forever.

I also dedicate this thesis to my friends for happy and hard times we went through together during our Master's journey.

Acknowledgement

Primarily I would like to thank god for being able to complete this project with great success. Then I would like to thank my project guide Dr. Suha Mujahed Abudoleh, Dr. Hesham Mohamed Tawfeek and Dr. Nisreen Aldahshan, this project would not have been completed without their enormous help and worthy experience, whenever I was in need they were there behind me.

TABLE OF CONTENTS

_	Content	Page
_	_ Authorization form	
	_ Committee Decision Dedication	
	Dedication	Iv
	Acknowledgement Authorization form	V
	Table of Contents	Vi
	List of Tables	Х
_	List of Figures	Xi
_	List of Abbreviations or symbols	Xiv
_	Abstract (in the language of the thesis)	Xvi
1	Introduction	
1	1 Introduction	
1.1	1.1 Research aims and objectives	
2	2 Literature review	
2.1	Background of fungi, fungal infections and antifungal	6
	drugs	
2.2	2.2 Description of sertaconazole	
2.2.1	2.2.1 Therapeutic efficacy of sertaconazole	
2.2.2	2.2.2 Anti-inflammatory and anti-itch activity of sertaconazole	
2.2.3	2.2.3 Spectrum activity of sertaconazole	
2.2.4	2.2.4 Antibacterial activity of sertaconazole <i>in vitro</i>	
2.3	2.3 Background of cyclodextrin	
2.3.1	Applications of cyclodextrin	13

2.3.2	Formation of inclusion complex of cyclodextrin	
2.3.3	Sulfobutyl ether-β-cyclodextrin	15
2.4	Previous studies	
3	Materials and Methods	20
3	Materials, ingredients and equipment	20
3.1	Preparation of sertaconazole/ cyclodextrin complexes	22
3.1.1	Preparation of the physical mixture	22
3.1.2	Co- grinding method	22
3.1.3	Co-evaporation method	23
3.2	Characterization of SER/CD complexes: FT-IR, XRD	23
	and DSC.	
3.2.1	3.2.1 Fourier – Transform infrared spectroscopy (FT-IR)	
3.2.2	Differential scanning calorimetry (DSC)	24
3.2.3	X-ray diffraction (XRD)	24
3.2.4	In vitro dissolution study	25
3.2.4.1	3.2.4.1 Acetate buffer preparation	
3.2.4.2	3.2.4.2 Calibration curve	
3.3	Preparation of sertaconazole topical hydrogel and	25
	sertaconazole vaginal suppositories	
3.3.1	3.3.1 Hydrogel formulation	
3.3.2	3.3.2 Evaluation of sertaconazole hydrogel	
3.3.2.1	Drug content	26
3.3.2.2	pH	26
3.3.2.3	Viscosity	26

3.3.2.4	Homogeneity and appearance	
3.3.2.5	In vitro drug release	
3.3.3	Vaginal suppositories formulation	
3.3.4	Evaluation of prepared SER vaginal suppositories	28
3.3.4.1	Drug content	28
3.3.4.2	Hardness test	28
3.3.4.3	Melting point determination	29
3.3.4.4	Disintegration time	29
3.3.4.5	In vitro release studies	29
3.4	Evaluation of the antifungal activity of the optimized	29
	formulations of SER against Candida albicans	
3.4.1	3.4.1 Agar well diffusion method	
3.4.2	3.4.2 Ex vivo pig skin culture method	
3.4.3	3.4.3 Statistical analysis	
4	4 Results and Discussion	
4.1.1	4.1.1 Differential scanning calorimetry	
4.1.2	X- ray diffraction studies	37
4.1.3	4.1.3 Fourier – Transform infrared spectroscopy	
4.1.4	4.1.4 <i>In vitro</i> dissolution studies	
		53
4.2.	4.2. Evaluation of SER hydrogels	
4.2.1	4.2.1 Drug content	
4.2.2	Ph	58
4.2.3	4.2.3 Viscosity	
4.2.3	VISCOSILY	58

4.2.4	Homogeneity and appearance	58
4.2.5	In vitro drug release studies	
4.3.	Evaluation of prepared SER vaginal suppositories	60
4.3.1	Drug content	60
4.3.2	Hardness test	60
4.3.3	Melting point	61
4.3.4	Disintegration time	61
4.3.5	In vitro release studies	61
4.4	Evaluation of the antifungal activity of the optimized	64
	formulations of SER against Candida albicans	
4.4.1 Agar well diffusion method		64
4.4.2 <i>Ex vivo</i> pig skin culture method		65
5	Conclusion	67
5.1	Conclusion and Future recommendations	67
6	References	68
-	References	68
_	_ Appendix	
_	Abstract (in the second language)	84

LIST OF TABLES

Number	Table caption	Page
1	Chronological development of cyclodextrin	11
2	List of chemicals	
3	List of equipment and instruments used	21
4	The composition of the prepared SER vaginal suppositories	28
5	The melting endotherm and heat fusion of prepared systems	36
6	Physical characteristics of prepared SER hydrogels	60
7	Physical characteristics of prepared SER vaginal suppositories	63
8	Average inhibition zone of hydrogel preparations on different	64
	yeast (mean± SD, n=3).	
9	The cumulative percentage of SER dissolved at pH 4.5 from the	79
	different prepared samples using HP-β-CD at 1:1 molar ratio	
10	The cumulative percentage of SER dissolved at pH 4.5 from the	79
	different prepared samples using HP- β -CD at 1:2 molar ratio	
11	The cumulative percentage of SER dissolved at pH 4.5 from the	80
	different prepared samples using SBE- β -CD at 1:1 molar ratio	
12	The cumulative percentage of SER dissolved at pH 4.5 from the	81
	different prepared samples using SBE-β-CD at 1:2 molar ratio	
13	Cumulative percentage of SER released from the prepared	82
	hydrogels at pH 4.5.	
14	Cumulative percentage of SER released from different	83
	suppository bases at pH 4.5.	

LIST OF FIGURES

Number	Figure caption	Page
Fig. 1	Chemical Structure of sertaconazole nitrate	2
Fig. 2	Chemical Structure of sulphobutyl ether-β-cyclodextrin	
Fig. 3	Applications of CDs	14
Fig. 4	DSC thermograms of SER, HP- β -CD and their physical, ground and co-	34
	evaporate mixtures at molar ratio of (1:1).	
Fig. 5	DSC thermograms of SER, HP- β -CD and their physical, ground and co-	35
	evaporate mixtures at molar ratio of (1:2)	
Fig 6	DSC thermograms of SER, SBE- β -CD and their physical, ground and co-	35
	evaporate mixtures at molar ratio of (1:1)	
Fig7	DSC thermograms of SER, SBE- β -CD and their physical, ground and co-	36
	evaporate mixtures at molar ratio of (1:2)	
Fig 8	XRD diffractogram of SER and its co-evaporate, physical and ground	39
	mixtures with HP- β -CD at 1:2 molar ratio.	
Fig 9	XRD diffractogram spectra of SER and its physical, ground and co-	40
	evaporate mixtures with SBE- β -CD at (1:2) molar ratio.	
Fig 10	XRD diffractogram spectra of SER and its co-evaporate mix with SBE-	41
	β -CD at (1:2) and (1:1) molar ratios	
Fig 11	XRD diffractogram of SER and its co-evaporate mix. with SBE- β -CD	42
	and HP- β -CD at 1:2 molar ratio.	
Fig 12	FT-IR spectrum of sertaconazole nitrate	46
Fig 13	FT-IR spectrum of HP-β-CD	46
Fig 14	FT-IR spectrum of SBE-β-CD	47
Fig 15	FT-IR spectrum of SER and its physical mixture with HP- β -CD at 1:1	47

	molar ratio	
Fig 16	FT-IR spectrum of SER and its physical mixture with HP- β -CD at 1:2	48
	molar ratio	
Fig 17	FT-IR spectrum of SER and its ground mixture with HP- β -CD at 1:1	48
	molar ratio	
Fig 18	FT-IR spectrum of SER and their ground mixture with HP- β -CD at 1:2	49
	molar ratio	
Fig 19	FT-IR spectrum of SER and its co-evaporate mixture with HP- β -CD at	49
	1:1 molar ratio	
Fig 20	FT-IR spectrum of SER and its co-evaporate mixture with HP- β -CD at	50
	1:2 molar ratio FT-IR	
Fig 21	FT-IR spectrum of SER and its physical mixture with SBE- β -CD at 1:1	50
	molar ratio	
Fig 22	FT-IR spectrum of SER and its physical mixture with SBE- β -CD at 1:2	51
	molar ratio	
Fig 23	FT-IR spectrum of SER and its ground mixture with SBE- β -CD at 1:1	51
	molar ratio	
Fig 24	FT-IR spectrum of SER and its ground mixture with SBE- β -CD at 1:2	52
	molar ratio	
Fig 25	FT-IR spectrum of SER and its co-evaporate mixture with SBE- β -CD at	52
	1:1 molar ratio	
Fig 26	FT-IR spectrum of SER and its co-evaporate mixture with SBE- β -CD at	53
	1:2 molar ratio	
Fig 27	Calibration curve of SER at buffer pH of 4.5 using concentrations ranging	55
	from 5-40 μ g/ml (mean \pm SD).	

Fig 28	SER release profile alone at pH 4.5	55
Fig 29	The cumulative percentage of SER dissolved at pH 4.5 from the different	56
	prepared systems using HP- β -CD at 1:1 molar ratio. A: co-evaporate, B	
	physical, C: ground mixtures.	
Fig 30	The cumulative percentage of SER dissolved at pH 4.5 from the different	56
	prepared systems using HP- β -CD at 1:2 molar ratio. A: co-evaporate, B	
	physical, C: ground mixtures.	
Fig 31	The cumulative percentage of SER dissolved at pH 4.5 from the different	57
	prepared systems using SBE- β -CD at 1:1 molar ratio. A: co-evaporate, B	
	physical, C: ground mixtures.	
	The cumulative percentage of SER dissolved at pH 4.5 from the different	
Fig 32	prepared systems using SBE- β -CD at 1:2 molar ratio. A: co-evaporate, B	57
	physical, C: ground mixtures.	
	Cumulative percentage of SER released from the prepared hydrogels. A:	
Fig 33	carbopol, B: HPMC and C: Na CMC.	59
Fig 34	Cumulative percentage of SER released from fatty suppository bases. A:	62
	WitepsolH-15, B: Suppocire AML, C: Suppocire BS2X at pH 4.5.	
Fig35	Cumulative percentage of SER released from PEGS suppository bases. A:	63
	(PEG1500: PEG6000 50:50% W/W) and B: (PEG4000: PEG6000	
	50:50% W/W) at pH 4.5.	
Fig 36	The effect of hydrogel preparations on <i>Candida albicans</i> cultured on <i>ex</i>	66
	<i>vivo</i> porcine skin explants. Results are means of n=3±SD	

Abbreviation or symbols	Definition
SER	Sertaconazole
HP-β-CD	Hydroxy propyl-β-cyclodextrin
SBE-β-CD	Sulfobutyl ether- β-cyclodextrin
CD	Cyclodextrin
DSC	Differential scanning calorimetry
FT-IR	Fourier Transform infrared spectroscopy
XRD	X-ray diffraction
РН	Potency of hydrogen
Cps	Centi poises
DT	Disintegration time
Kg	Kilogram
PEG	Polyethylene glycol
C. albicans	Candida albicans
G	Gram
Ml	Milliliter
ATCC	American type culture collection
Na CMC	Sodium carboxymethyl cellulose
НРМС	Hydroxhypropyl methyl cellulose
NaOH	Sodium hydroxide
SD	Standard deviation
Min	Minute
Т	Time
CFU	Colony Forming Unit

LIST OF ABBREVIATIONS OR SYMBOLS

Hr	Hour
UV-Vis	UV-Visible spectroscopy
DV	Displacement value
RPM	Revolution per minute
Mix	Mixture
M wt	Molecular weight
H.V.S	High vaginal swab
MR	Melting range
β-CD	Beta cyclodextrin

Preparation, Characterization, and Antifungal activity of Sertaconazole-Sulfobutyl

ether -β-Cyclodextrin Complex

Prepared by

Ashar Abdulsalam Ahmad Alkfaween

Supervised by

Dr. Suha Mujahed Abudoleh

Co-Supervised by

Dr. Hesham Mohamed Twafeek

ABSTRACT

Background: Vaginal candidiasis is one of the most common infections in women. A large variety of antifungal drugs are used for treatment. Sertaconazole (SER) is an imidazole derivative used for treatment of local and systemic fungal infections. Sertaconazole has poor water solubility which affects its dissolution and bioavailability. The objective of this study was to enhance the dissolution and therapeutic efficacy of SER through interaction with certain cyclodextrins (CD) namely HP- β -CD and SBE- β -CD. This could also improve the overall drug efficiency toward *C. albicans*. In addition, the optimum system in terms of higher *in vitro* release was formulated into vaginal suppositories and topical hydrogels for maximum effect.

Methods: Inclusion complex of SER and CD either HP- β -CD or SBE-B-CD were prepared by physical mixture, ground mixture and co-evaporated at 1:1 and 1:2 molar ratios. Systems were characterized by Fourier Transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and *in vitro* dissolution studies. SER hydrogels were formulated in different gelling agents and evaluated for their pH, viscosity, homogeneity, *in vitro* drug release, drug content and antifungal activities. SER vaginal suppositories were formulated using hydrophilic and hydrophobic bases and evaluated for their hardness, disintegration time, drug content, melting point and *in vitro* drug release.

Results: Results obtained from FT-IR, DSC, XRD and *in vitro* dissolution studies showed that the co-evaporation method was the best method for forming the inclusion complex with the investigated CDs. SER was released from SER/ SBE- β -CD co-evaporate complex at 1:2 molar ratio at a percentage of 93.87%±0.049. Hydrogel 1% and vaginal suppositories of 100 mg SER were successfully formulated and showed SER release of 95.42%±0.148 and 96.31%±0.37 respectively.

Conclusion: SER inclusion complex with SBE- β -CD enhanced the dissolution of the drug significantly. In addition, the optimum hydrogel formulation showed significant antifungal activity against *C. albicans* compared with hydrogel containing SER alone.