

Developing Atorvastatin calcium transdermal patches and application on rat skin

By

Rawan Al-Hijjawi

Supervisor Prof. Dr. Raad J. Al-Ani

This thesis was submitted in partial fulfillment of the requirements for the master's degree in pharmaceutical sciences

Faculty of pharmacy

Isra University

Nov, 2018

جامعة الاسراء

نموذج تفويض

انا روان سعيد الحجاوي, افوض جامعة الاسراء بتزويد نسخة من رسالتي / اطروحتي للمكتبات او المؤسسات او الهيئات او الأشخاص عند طلبها حسب التعليمات النافذة في الجامعة

التوقيع :

التاريخ:

Isra university

Authorization form

I, Rawan said Al-hijjawi, authorize Isra University supply copies of my thesis / dissertation to libraries to establishments or individuals on request according to Isra university regulations

Signature:

Date:

Abstract of thesis presented to senate of Isra University in fulfillment of the requirement for the degree of master

Developing Atorvastatin calcium transdermal patches and application on rat skin

By

Rawan said Al-hijjawi

Nov, 2018

Abstract

Atorvastatin is a statin molecule, which is used for the treatment of hypercholesteremia to prevent cardiovascular disease. It is available as oral dosage form with four strengths; 10mg, 20mg, 40mg, and 80mg, it has low bioavailability due to its first pass metabolism in the liver and gastrointestinal tract. Atorvastatin has serious adverse side effects especially in liver and leads to myalgia and myopathy. In this study, a new microemulsion was developed using Dimethyl Sulfoxide, Polyethylene glycol400, Isopropyl myristate, and non-ionic surfactant Tween 80 for transdermal of Atorvastatin to improve bioavailability and reduce side effect. The MEs formulae were characterized in vitro using Franz cell, droplet size and rheological properties. The formula which contains 800mg Atorvastatin calcium, 4ml Dimethyl Sulfoxide, 2ml Polyethylene glycol400 and,4ml Isopropyl myristate gave us a clear stable microemulsion with high flux rate 10.078mcg/cm²/hr. it was tested orally and transdermally in vivo using rats. In transdermal application it gives maximum concentration 1.02mcg/hr, 5hr Tmax, and long duration time around 48hr without any irritation on the skin and no adverse effects had appeared on rats. No significant elevation in Creatinine Kinase and Alanine Transferase has been recorded in transdermal application comparing to oral application.

COMMITTEE DECISION

This Thesis/Dissertation (Developing Atorvastatin calcium transdermal patches and application on rat) was successfully Defended and Approved on

Examination Committee Signature

Prof Dr. Raad Al-Ani (Supervisor).

Dr. Eman Alzmaeli (Internal Member).

Prof Dr. Enam Khalil (External examiner)

Dedication

This thesis is dedicated to:

The sake of Allah, my Creator and my Master,

My great teacher and messenger, Mohammed (May Allah bless

and grant him), who taught us the purpose of life,

My great parents, who never stop giving of themselves in countless

ways,

My beloved brothers and sisters

My dearest manager, who supported me a lot,

To all my Friends and employees in united, the symbol of love and giving,

All the people in my life who touch my heart,

I dedicate this research.

Acknowledgement

In the Name of Allah, the Most Merciful and the Most Compassionate.

First and foremost, my acknowledgment and limitless thanks goes to Allah who made this work become truth.

I am sincerely grateful to Dr. Amjad Abu- Rmeleh, the Dean of college of Pharmacy, Isra University, for his support.

I would like to thank Dr. Enam Khalil for accepting being an examiner for my thesis, I really appreciate that.

I would like to thank Dr. Eman Alzmaeli for accepting being an examiner for my thesis, I really appreciate that.

I would like to express my sincere gratitude deepest thanks to my Prof Dr. Raad Alani, for his scientific guidance and support. Wishing him continuous progress.

I would like to express my sincere gratitude deepest thanks and appreciation to Dr. Jamal Al- Krad who shows me the right way to take throw the whole experiments period I really appreciate that.

I would like to take this opportunity to say warm thanks to my manager Dr. Roula Bakri, who have been so supportive along the way of doing my thesis.

I also would like to express my wholehearted thanks to my family for their generous support they provided me throughout my entire life and particularly through the process of pursuing the master degree. Because of their unconditional love and prayers, I have the chance to complete this thesis.

I am also grateful to my brother Mosa without his help, this study would not have been possible.

I would like to express thanks for all employees in researcher and development in United company for support.

TABLE OF CONTENTS

Abstrac	t	II		
Committee decision		III		
Dedicat	ion	IV		
Acknowledgement				
Table of	f contact	VI		
List of t	List of tables			
List of Figures		Х		
List of a	abbreviations of	XI		
1.	Introduction	1		
1.1	Atorvastatin	1		
1.1.1	Structure	2		
1.1.2	Pharmacokinetics and pharmacodynamics	2		
1.2	Skin anatomy	5		
1.2.1	Epidermis	6		
1.2.2	Dermis	6		
1.2.3	Hypodermis or subcutaneous Tissue	7		
1.3	Transdermal drug delivery	7		
1.3.1	1.3.1Percutaneous absorption7			
1.3.2	Routes of drug penetration through skin	8		
1.3.2.1	Transepidermal route	8		
1.3.2.2	Transfollicular route (Shunt pathway)	10		
1.3.3	Advantages of transdermal	10		
1.3.5	The drug administered as transdermal drug delivery system	10		
1.3.5.1	Physicochemical properties	10		
1.3.5.2	Biological properties	10		
1.3.6	Limitations of transdermal delivery at the drug	10		
1.4	Microemulsions	11		
1.4.1	Type of Microemulsions	11		
1.4.2	Advantages of Microemulsions	11		
1.4.3	Disadvantages of Microemulsion Based systems	11		
1.4.4 Ingredients of Microemulsion systems 12				
1.4.4.1	1.4.4.1 Oily phase or Lipophilic phase			

1.1.4.2	Aqueous phase	12
1.4.4.3	Surfactants	12
1.4.4.4	Co-surfactants	13
1.4.4.5	Factors affecting Formulation of Microemulsion	13
1.4.4.6	Evaluation of Microemulsion	13
1.4.4.7	Stability of microemulsions	13
1.5	Franz cell	14
1.6	Transdermal delivery of Atorvastatin	15
1.7	Objectives	19
2.0	Materials, Instruments and Methods	20
2.1	Materials	20
2.1.1	Safety of materials used in preparation microemulsion	20
2.2	Instruments and methods	20
2.2.1	Microemulsions Preparation	20
2.2.2	Pseudo-ternary phase diagrams of Micro emulsion systems	21
2.2.3	Viscosity Measurements	21
2.2.4	Droplet size Measurements	21
2.2.5	Fourier transform Infrared	22
2.2.6	Preparation of rat's skin	22
2.2.7	In vitro Atorvastatin penetration study using Franz diffusion cell	22
2.2.8	In vivo transdermal Atorvastatin loaded microemulsion penetration study	23
2.2.9	In vivo orally Atorvastatin loaded micro emulsion study	25
2.2.10	HPLC method	25
2.2.11	Pharmacokinetic and statistical analysis	26
3.0	Results	27
3.1	HPLC method and calibration curve	27
3.2	Three phase diagrams	30
3.3	Rheological properties	31
3.4	Droplet size measurement	31
3.5	Stability of Microemulsion	33
3.6	Studying of Atorvastatin encapsulation using Fourier transform infrared spectroscopy (FTIR)	33
3.7	Transdermal studying using Franz diffusion cell	34

3.8	In vivo Transdermal Atorvastatin loaded microemulsion penetration study 40		
3.9	oral bioavailability of Atorvastatin Microemulsion		
3.10	Measuring creatinine Kinase and Alanine transferase for rats after applying Atorvastatin MEs transdermal and oral	44	
4.	Discussion	45	
5.	Conclusion	47	
6.	References	48	
	References	-10	

LIST OF TABLES

Table 1	Composition of formulated microemulsions 2			
Table 2	The measured polydisperisty index (PDI) and droplet size for different formulated microemulsions with Atorvastatin using Zeta-sizer			
Table 3	The Flux of different formulated microemulsions through rat's skin using Franz diffusion cell			
Table 4	Summarizes and results of elimination rate constant, absorption rate constant time of maximum absorption and maximum concentration of Atorvastatin 4 Formula no. 4			
Table 5	Elimination rate constant, the absorption rate constant, time of maximum absorption and maximum concentration of Atorvastatin			
Table 6	Chemical lab test for creatinine Kinase and Alanine transferase	44		

LIST OF FIGURES

Figure 1	Chemical structure of Atorvastatin	2
Figure 2	HMG-CoA reductase structure & Atorvastatin structure	3
Figure 3	Skin anatomy	
Figure 4	Epidermis anatomy	
Figure 5	Percutaneous Permeation	8
Figure 6	Macro routs for drug penetration	
Figure 7	Transepidermal routs	
Figure 8	Microemulsion	
Figure 9	Franz diffusion cell	
Figure 10	Atorvastatin ME penetration study using Franz diffusion cell	23
Figure 11	Atorvastatin Extraction from plasma	24
Figure 12	Atorvastatin Extraction from plasma with ethylacetate	24
Figure 13	In vivo orally Atorvastatin loaded microemulsion study	25
Figure 14	Calibration curve of Atorvastatin	27
Figure 15	HPLC Calibration curve of Atorvastatin	28
Figure 16	Chromatograms for blank &Excipients using High pressure liquid chromatography (HPLC)	
Figure 17	Chromatograms for Plasma blank using High pressure liquid chromatography (HPLC)	
Figure 18	Atorvastatin MEs were established by three phase diagrams	30
Figure 19	The three phase diagrams for microemulsions (MEs) composed of Isopropyl myristate, mixture of Dimethyl sulfoxide: Polyethylene glycol 3 400 (2:1) and Tween 80 without Atorvastatin, with Atorvastatin	
Figure 20	Rheogram of shear rate against viscosity	31
Figure 21	Droplet size for Atorvastatin microemulsions	33
Figure 22	FTIR-spectra of each pure component used in producing the microemulsion with Atorvastatin, microemulsion without Atorvastatin and microemulsion 3 with Atorvastatin	
Figure 23	The release profile of AT from different formulated MEs	35
Figure 24	A, B, C, D, E, F, G, H: Flux and lag time estimation from Atorvastatin penetration profile in different formulations through rat skin	36
Figure 25	Chromatograms for Plasma blank using High pressure liquid chromatography (HPLC)	40
Figure 26	Chromatograms of Atorvastatin using High pressure liquid chromatography (HPLC) for samples collected from blood	41
Figure 27	plasma level time curve for transdermal bioavailability of Atorvastatin in rats	41
Figure 28	plasma level time curve for oral bioavailability of Atorvastatin in rats	43
Figure 29	Chromatograms of Atorvastatin using High pressure liquid chromatography (HPLC) for samples collected from blood	44

LIST OF ABBREVIATIONS OR SYMBOLS

TDDS	Transdermal drug delivery systems
HMG-CoA	3-hydroxy-3-methylglutarylcoenzyme
DMF	Dimethylfuran
PBS	Phosphate buffer system
AT	Atorvastatin
LDL	Low density lipoprotein
ALT	Alanine transfers
PEG 400	Polyethylene glycol 400
DMSO	Dimethyl sulfoxide
IPM	Isopropyl myristate
SC	Stratum corneum
НРМС	Hydroxypropylmethylcellouse
СК	Creatinine Kinase
MET	Methanol
ACN	Acetonitrile
ME	Microemulsion