AUTHRIZATION STATEMENT

I'm Fatimah Alkharaz, authorize Isra university to supply hard and electronic copies of my thesis to libraries, establishment, or bodies and institutions concerned research and scientific studies upon request, according to the university regulations

Date:

Signature:

SYNTHESIS OF ACETYLCHOLINESTRASE INHIBITOR AS POTENTIAL DRUG FOR THE TREATMENT OF ALZHEIMER'S DISEASE

Prepared by

Fatimah Fathi Omar Alkharaz

Supervised by

Dr. Qais Abualassal

Co-Supervised by

Dr. Zead Abudayeh

A Thesis

Submitted to Faculty of Pharmacy as a Partial Fulfillment of the Requirements for Master's Degree in Science of Pharmacy

December, 2018

COMMITTEE DESSION

This Thesis / Dissertation (Synthesis of Acetylcholinesterase Inhibitor as Potential Drug for the Treatment of Alzheimer's Disease) was successfully defend and approved.

Examination Committee	<u>Signature</u>
Dr. Qais Abualassal	••••••
Dr. Zead Abudayeh	•••••
Prof. Dr. Jamal Jilani	
Dr. Manal Najdawi	••••••

Acknowledgement

Foremost, I would like to express my sincere gratitude to my advisors **Dr. Qais Abualassal** and **Dr. Z.ead Abudayeh** for the continuous support of my masters thesis, for their patience, motivation, enthusiasm, and immense knowledge. Their guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisors and mentors for my masters study.

Besides my advisors, I would like to thank the dean of the Faculty of pharmacy Dr. Amjad Abuirmeileh and the spiritual father Prof. Ahmad Nadaf for their efforts and continuous support. My sincere thanks also go to Dr. Eyad Mallah from Petra University and Dr. Munther Melhim from Jordan Center for Pharmaceutical Research for their encouragements and cooperation.

I thank my fellows especially dear Zahra Daham and dear Rasha Khaled.

Last but not the least, I would like to thank my family: my precious parents, my sisters Hanan and Tahanie Ali and my brothers for supporting me spiritually throughout my life. Special thanks to the partners of my success and the secret of my survival, my beloved daughters.

List of Content

	Content	Page
	Chapter One	1
	Introduction	2
1.1	Risk factors	2
1.2	Etiology	2
1.3	Previous study	10
	Objective of this work	14
	Chapter Two	15
2.	Materials and Methods	16
	Chapter Three	18
3.	Experimental	19
	Chapter Four	30
4.	Results and Discussion	31
	Chapter Five	35
5.1	Conclusions	36
5.2	Recommendations	36
	References	37
	Abstract in the second language	41

List of Tables

Number	Table caption	Page
1	Reaction conditions used for optimization of compound 3 synthesis	32
2	Reaction conditions used for optimization of compound 4 synthesis	34

List of Figures

Number	Figures caption	Page
1.1	Core structure of quinazoline and quinazolinones	10
1.2	Quinazoline derivatives with anticholinesterase activity	12
3.1	H1 NMR spectrum for compound 2	20
3.2	GC-MS spectrum for compound 2	21
3.3	H1 NMR spectrum for compound 3	23
3.4	C13 NMR spectrum for compound 3	24
3.5	GC-MS spectrum for compound 3	25
3.6	H1 NMR spectrum for compound 4	27
3.7	C13 NMR spectrum for compound 4	28
3.8	GC-MS spectrum for compound 4	29

List of Abbreviations

AD	Alzheimer's disease
APOE4	Apolipoprotein gene E4 alleles
ADAMS	Aging, Demographics, and Memory Study
Αβ	Amyloid beta
BBB	Blood brain barrier
ROS	Reactive oxygen species
PD	Parkinson's disease
mRNA	Messenger ribonucleic acid
NBM	Nucleus basalis of Meynert
ACh	Acetylcholine
ChAT	Choline acetyltransferase
AChE	Acetylcholinestrase enzyme
BuChE	Butyrylcholinesterase
Ac CoA	Acetyl coenzyme A
CAS	Acylation site
PAS	Peripheral anionic site

NMDA	N-methyl-D-aspartate
nAChRs	Nicotinic cholinergic receptors
mAChRs	Muscarinic cholinergic receptors
α7 receptors	Alpha-7 nicotinic acetylcholine receptors
anti-TMV	Anti-tobacco mosaic virus
anti-HIV	Anti human immunodeficiency virus
LDL	Low density lipoprotein
GC-MS	Gas Chromatography-Mass Spetroscopy
FID	Flame ionisation detection
TLC	Thin layer chromatography
Rf	Retention factor
Hsp	Heat shock protein
SAR	Structure activity relationships
TEA	Triethylamine
NMR	Nuclear magnetic resonance
TMS	Tetramethylsilane
LiAlH ₄	Lithium aluminum hydride

TMSCl	Trimethylsilyl chloride
DCM	Dichloromethane
THF	Tetrahydrofurane
NaOH	Sodium hydroxide
Ppm	Parts per million
CDCl ₃	Deuterated chloroform
Na ₂ SO ₄	Sodium sulfate
HCl	Hydrochloric acid

SYNTHESIS OF ACETYLCHOLINESTRASE INHIBITOR AS POTENTIAL DRUG FOR THE TREATMENT OF ALZHEIMER'S DISEASE

By

Fatimah Fathi Alkharaz Supervisor Dr. Qais Abualassal Co- Supervisor Dr. Zead Abudayeh

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder in which the death of brain cells causes memory loss and cognitive decline. The disease starts with mild symptoms and gradually becomes severe. AD is one of the leading causes of mortality worldwide. Several different hallmarks of the disease have been reported such as low levels of acetylcholine, deposits of β amyloid around neurons, hyperphosphorylated tau protein, oxidative stress, etc. Strategies for prevention of AD through non pharmacological treatments are associated with lifestyle interventions such as exercise, mental challenges, and socialization as well as caloric restriction and a healthy diet. Pharmacotherapy for AD currently depends on using acetylcholinesterase inhibitors (AChEIs) and *N*-methyl-D-aspartate (NMDA) receptor antagonists. They provide only symptomatic relief and mostly targets cognitive revival. Quinazoline ring scaffold represents a privileged structure that has been utilized to design therapeutic agents for a wide number of diseases. In this research novel quinazoline derivatives **3** and **4** were synthesized starting from 1-*N*-Methylisatoic anhydride (**1**) and different analytical methods were utilized for monitoring synthesis and characterization of the target products as TLC, GC-MS and NMR (H^1 and C^{13}).

Ammonia aqueous solution was reacted with compound **1** to produce compound **2** giving (85.71%) yield, this product has been used to synthesize novel compound **3** through the reaction with cycloheptanone catalyzed by toluene-4-sulfonic acid monohydrate afforded the desired compound (97%) yield.

The second novel compound **4** was formed through activation of carbonyl carbon in the amide group of **3** with trimethylsilyl chloride (TMSCl) followed by reduction with lithium aluminium hydride (LiAlH₄) giving (73.1%) yield.

In this work, the reaction conditions were optimized for the synthesis of **3** and **4** allowing to get them in an excellent yield.