

Isra University Faculty of Engineering Engineering Project Management Program

Predicting the Earned Value for Tunnels Projects Using Artificial Neural Network Approach

A thesis Submitted to Isra University
In Partial Fulfillment of the Requirements for the Degree of Master of
Science Engineering in Engineering Projects Management

Prepared by Mohammed AbdulRazzaq AbdulQader

Supervised by Associate Professor Dr. Karim M. Aljebory

ISRA UNIVERCITY AUTHORIZATION FORM

I, Mohammed AbdulRazzaq AbdulQader, authorize Isra University to provide copies of my Thesis to libraries, establishments, and individual upon
request, according to Isra University regulation.
Signature:
Date 28 Aug. 2018

Acknowledgment

I would like to convey my profound appreciation, gratitude and thankfulness to (Associate. Prof Dr. Faiq M. S. Al-Zwainy) for his guidance, encouragement.

Greatest thanks and appreciation to my supervisor (Associate Prof. Dr. Karim M. Aljebory) for his follow up, and (Associate Prof. Dr. Ibrahim A. Mohammed) for his valuable review and support and I would like to express my thanks to (Associate Prof. Dr. Bashar Khaled Tarawneh) for his deep insightful dialogue during thesis presentation.

In addition, my gratitude is pledged to all my family and my friends for their support and enthusiasm as well as continuous assistance towards the accomplishment of the research.

Predicting the Earned Value for Tunnels Projects Using Artificial Neural Network Approach

By

Mohammed AbdulRazzaq AbdulQader Supervised by

Associate Professor Dr. Karim M. Aljebory

Abstract

Earned Value Management (EVM) is a project management methodology that integrates scope, schedule, and cost. It is a framework that allows project management professionals to monitor these three components so they have an objective measure of project health. The goal is to optimize subjective progress measurement.

There may be a weakness in earned value management for the tunnels projects because the current available techniques are poor and uncertain. However, today a great deal of effort is focused on the development of neural network for predicting the EVM in construction Projects generally, and tunnels projects especially.

The main objective of this study is to introduce Artificial Intelligence (AI) in conducting statistical approach for earned value management of the tunnels projects. Methodology is mainly depended on the determination of various factors that affect the EVM of the tunnels projects, that involves historical data in Iraq and Jordan.

five independent variables were randomly selected (Actual Cost AC, Planning Value PV, Earned Value EV, Actual Duration AD and Planning Duration PD), which were well defined for each tunnel project, and one dependent variable Schedule Performance Index (SPI) was selected.

Neuframe Program was selected, which is the premier neural network simulation environment. The procedure adopted for finding the optimal network architecture and internal parameters that control the training process which carried out by using the default parameters of the Neuframe software package.

The experimentation results reveal that, Mean Absolut Percentage Error (MAPE%) and Average Accuracy percentage (AA%) generated by ANN model (SPI) were found to be 11% and 89% respectively. Therefore, it can be concluded that ANN model (SPI.model.1) shows an excellent agreement with the actual measurements.

Content

	Title	Page
CONTENTS		I
LIST OF FIGURES		I
LIST C	F TABLES	I
LIST A	BBREVIATIONS AND SYMBOLS	I
	Chapter One (Introduction)	
1.1	Introduction	1
1.2	Research Hypothesis	1
1.3	Research Aim and Objectives	2
1.4	Research Methodology	2
	1- Literature Survey:	2
	2- Field Work Included Five Stages;	3
1.5	Research Structure	3
	Chapter Two (Earned Value Management:	
	Concept and Applications)	
2.1	Introduction	5
2.2	Understanding Projects and Project Management	6
2.3	Concept of Earned Value Management	7
2.4	Historical View of Earned Value Management	9
2.5	Brief Review of EVM	11
2.6	Importance of Earned Value in Project Management	13
2.7	Earned Value Measurement Techniques	15
2.8	EVM in the construction Sector	16
	2-8-1 Managing construction projects with EVM	16
	2-8-1-1 External causes	17
	2-8-1-2 Internal causes	18
	2-8-1-3 Solving the problem	18

	2.8.2 EVM And the Project Management Process	21			
2.9	Fundamental of Earned Value Management Analysis	23			
	2.9.1 Basic Elements				
	2.9.1.1 Planned Value				
	2.9.1.2 Actual Cost				
	2.9.1.3 Earned Value				
	2.9.2 Input data of EVM	26			
	2.9.3 Cost Indicators	27			
	2.9.3.1 Cost Variance	28			
	2.9.3.2 Cost Variance Percentage	28			
	2.9.3.3 Cost Performance Indicator	28			
	2.9.3.4 To Complete Cost Performance Indicator	29			
	2.9.4 Schedule Indicators	29			
	2.9.4.1 Schedule Variance	29			
	2.9.4.2 Schedule Variance %	30			
	2.9.4.3 Schedule Performance Indicator	30			
	2.9.4.4 To Complete Schedule Performance Indicator	31			
	2.9.5 Miscellaneous Formula Earned Value "Forecasting" Parameters	31			
	2.9.5.1 Budget at Completion	31			
	2.9.5.2 Estimate to Complete	33			
	2.9.5.3 Estimate at Completion	34			
	2.9.5.4 Variance at Completion	34			
	2.9.5.5 % Completed Planned				
	2.9.5.6 % Completed Actual	35			
2.10	EVM performance Analysis and forecasting	35			
2.11	Limitations of Using Earned Value Management	37			
2.12	Summery	39			
2.13	Previous Studies	40			
	Chapter Three (ARTIFICIAL NEURAL NETWORKS APPROACH)				
2.1					
3.1	Introduction	44			
3.2	Natural Neurons	45			
3.3	Artificial Neural Network	46			
	1 Weighting Factors	46			
	2 Summation Function	46			

	3	Activation function	47	
	4	Output Function (Competition)	48	
	5	Error Function and Back-Propagated Value	48	
3.4	Models of Artificial Neural Networks			
	3.4.1 F	eed-Forward Neural networks (FFNNs)	50	
	3.4.2 Re	ecurrent Neural Networks (RNNs)	52	
	a) Back	Propagation Learning Algorithm	52	
	Chapter Four (Application of Artificial Neural			
	Network in Earned Value Management)			
4.1	Introdu	uction	54	
4.2	Neufra	ame Software Applications	54	
4.3	Identif	rication of ANN Model Variables	56	
	1) Depe	endent variables	56	
	2) Indep	pendent variables	57	
4.4	Development of ANN model			
	1) Development of Model Inputs and Outputs			
	2) Data division			
	3) Model Architecture			
	4) ANN Model Equation			
	1) Schedule Variance (SV):			
	2) Sche	dule Performance Index (SPI):	63	
4.5	Verific	cation and Validation of the ANN Model	64	
	a) Mean	n Absolute Percentage Error (MAPE)	65	
	b) Avera	age Accuracy (AA)	66	
		Chapter Five (Conclusions and		
		Recommendations)		
5.1	Conclu	usions	67	
5.2	Recom	nmendations	68	
5.3	Recom	nmendations for Further Studies	68	
		References		

LIST OF FIGURES

NO.	Tittle	Page
(2-1)	Successful Project Meets All Three Requirements	7
(2-2)	Traditional Time and Cost Schedule	12
(2-3)	Earned Value Time and Cost Schedule	13
(2-4)	Transforming Data into EVM Parameters.	20
(2-5)	EVM and the Basic PM Process	23
(2-6)	Planned Value	24
(2-7)	Actual Cost	25
(2-8)	Earned Value	26
(2-9)	Earned Value Curves	27
(2-10)	The Special Case in Earned value	32
(2-11)	The Worst Case in Earned Value	32
(2-12)	the middle case	33
(2-13)	EVM Performance Measures	35
(2-14)	Interpretations of Basic AVM Performance Measures	36
(3-1)	Illustrates the four parts of biological neuron	45
(3-2)	the neuron model	49
(3-3)	Common choices for the activation functions	49
(3-4)	Multilayer feedforward neural network	51
(3-5)	The difference in the information flow between a RNN and a	53
	Feed-Forward Neural	
(4-1)	Graphing Component of NEUFRAME 4 Program	55
(4-2)	Tunnel Project in Amman	56
(4-3)	Structure of the ANNs Optimal (SPI) Model	62
(4-4)	Comparison of Predicted and Observed SPI for Validation Data	64

LIST OF TABLES

NO.	Tittle	Page
(2-1)	The EV Measurement Technique	15
(2-2)	Problems and Proposed Solution in EVM	19
(2-3)	EVM and Project Management.	22
(2-4)	EVM and Basic Project Management Questions	36
(4-1)	Total Available Data of 40 Projects in Iraq and Jordan (2005-2017).	59
(4-2)	The Validation Results for 4 Projects	60
(4-3)	Effect of Parameters on ANN Performance	61
(4-4)	Weight and Threshold Levels for the ANN Optimal	62
(4- 5)	Schedule Performance Index (SPI) Computed by ANN for	64
	Verification of Estimating Model	
(4- 6)	Verification of SPI Model.	65
(4-7)	Mean Absolute Percentage Error (MAPE)	65
(4-8)	Results of the Comparative Study	66