

Linear Programming Method to Optimize Haditha Dam Performance

Prepared by:

Ali Muntajab I. Al-Ruwayyih

Supervisor:

Asst. Prof. Dr. Tariq J. Al-Musawi

This Thesis Was Submitted in Partial Fulfillment of the Requirements for the Master's Degree in Engineering Project Management

> Isra University Faculty of Engineering Graduate Studies Amman-Jordan

JULY 2018

بِسْم اللَّهِ الرَّحْمَنِ الرَّحِيم قَالُوا سُبْحَانَكَ لَا عِلْمَ لَنَا إِلَّا مَا عَلَّمْتَنَا ۖ إِنَّكَ أَنتَ الْعَلِيمُ الْحَكِيمُ (٣٢) صَدَق الْلَهُ الْعَظِيْم سورة البقرة ﴿٣٢ ﴾

I dedicate this work to my great country, Iraq.

To my father, mother and sisters.

I also dedicate this thesis to my lovely wife,

whose words of motivation and encouragement for tenacity

ring in my ears.

I also dedicate this thesis to my friends who have supported me throughout this work. I will always appreciate all what they have done for helping me.

In addition, I would like to thank the Hashemite Kingdom of Jordan and its people for helping and hosting me throughout the duration of my research.

Ali Muntajab I. Al-Ruwayyih

2018

1 wish to express my deepest respect and sincere appreciation to my family for their support and encouragement throughout my study duration.

1 would also like to express my sincere thanks and deep gratitude to my supervisor Dr.

Tariq J. Al-Musawi for his valuable guidance, constant support, understanding,

encouragement, suggestion, utmost effort and interest through the present work that

greatly contributed to its successful completion.

Also, special thanks are due to the staff of the Civil Engineering Department at Al Isra University, especially **Dr. Ibrahim A. Mohammed** and **Dr. Rami Al-Samara'l** fo**r** their continual support throughout my research.

Finally, I wish to express my thanks to all my colleagues for their support and encouragement as well as for letting me feel a part of a wonderful team whenever we

worked together.

Ali Muntajab I. Al-Ruwayyih

2018

Isra University

I, Ali Muntajab I. Al-Ruwayyih, authorized Isra University to supply copies of my thesis to libraries, establishments or individuals on request, according to Isra University regulations.

Signature:

Date: /7 / 2018

This thesis titled, " Linear Programming Method to Optimize	Haditha Dam
Performance '' was successfully defended and approved by:	
Examination Committee	Signature
Asst. Prof. Dr. Tariq J. Al-Musawi (Supervisor)	
Department of Civil Engineering	
Faculty of Engineering	
Isra University	
Assoc. Prof. Dr. Ibrahim A. Mohammad (Member)	
Department of Civil Engineering	
Faculty of Engineering	
Isra University	
Assoc. Prof. Dr. Bashar Al-Smadi (Member)	
Department of Civil Engineering	
School of Engineering	
The University of Jordan	

Table of Contents

Item	Title	Page
	Dedication	i
	Acknowledgement	ii
	Authorization Form	iii
	Committee Decision	iv
	Table of Contents	V
	Abstract	Х
	Chapter One: Introduction	
1.1	Background	1
1.2	Problem Statement	6
1.3	Research Objectives	6
1.4	Study Area	7
1.5	Methodology	8
1.6	Structure of the Thesis	8
	Chapter Two: Literature Review	
2.1	Introduction	10
2.2	Fundamental Aspects about Dams	12
2.2.1	Generation of Electricity	18
2.2.2	Flood Damage Reduction	18
2.2.3	Improvement of Downstream Navigation	19
2.2.4	Recreational Aspect	20
2.2.5	Municipal and Industrial Supplies and Irrigation	20
2.3	Mathematical Models	20
2.4	Linear Programming Optimization	22
2.5	Study Area	25
2.5.1	Euphrates River	25
2.5.2	Haditha Dam	26
2.6	Previous Studies	30
	Chapter Three: Data Collection and Methodology	
3.1	Introduction	36
3.2	Data Collection	37

3.3	Methodology	43
3.3.1	Water Balance Concept	43
3.3.2	Mathematical Model	46
3.3.3	Solution Using MATLAB	52
Chapter Four: Results and discussion		
4.1	Preparation of the Optimization Model	55
4.2	Inflow and Initial Storage Analysis	57
4.3	Optimal Reservoir Operation	59
4.3.1	Wet Year (1996)	59
4.3.2	Moderate Year (2005)	63
4.3.3	Dry Year (2009)	67
	Chapter Five: Conclusions and Recommendations	
5.1	Conclusions	72
5.2	Recommendations	74

References	75
Appendix	A-1

List of Tables

Title	Page
Table 2.1: The Basic data of Haditha reservoir.	29
Table 3.1: The measured monthly inflow (It) at ES1 gage station (m ³ /s) for the years (1991-2011).	40
Table 3.2: The calculated storage (St) in October for the years (1991-2011).	41
Table 3.3: Average precipitation and evaporation registered at Haditha Reservoir	41
meteorological station for the years (1991-2011).	
Table 3.4: The average monthly water demands downstream Haditha Dam	42
$(10^{6} \text{m}^{3}/\text{month})$ for the years (1991-2011).	
Table 3.5: The agricultural area and water demand for irrigation downstream	42
Haditha reservoir.	
Table 4.1: Profit weight value for wet, moderate and dry years.	71

List of Figures

Title	Page
Figure 1.1: A map illustrating the spread of reservoirs and dams around the world.	2
Figure 1.2: Tigris and Euphrates rivers in Turkey, Syria and Iraq.	5
Figure 1.3: The locations of Iraq dams (identified by circular spots, Haditha dam	
is considered as a case study in the present work. More information	7
about this dam is presented in chapter three).	
Figure 1.4: Schematic flowchart of highlighted points of the present study chapters.	9
Figure 2.1: Basic dam types .	13
Figure 2.2: Schematic diagram showing dam components and partition of the	1.4
reservoir partition (Rukuni, 2006).	14
Figure 2.3: Some benefits of multi-purpose dams.	16
Figure 2.4: The location of Haditha dam in Iraq.	28
Figure 3.1: Location of streamflow gaging stations in Iraq (ES1 gage station is	20
the Hesiaba gage station which is the nearest one to the Haditha dam)	39
Figure 3.2: Water balance parameters	44
Figure 3.3: Schematic representation of the input/output parameters of the study	
problem, where RI, Rb, Rd and RS will be optimized to find the	48
maximum profit.	
Figure 4.1: Variation of the mean annual inflow for years (1991-2011).	58
Figure 4.2: The measured initial storage (St) for October in wet, moderate and dry	50
years.	58
Figure 4.3: Optimized storage for the wet year (1996).	60
Figure 4.4: Optimized studied outflow parameters for the wet year (1996)	61
Figure 4.5: Inflow and outflow hydrograph for Haditha reservoir for the wet year (1996)	62

Figure 4.6: Optimized storage for the moderate year (2005)	64
Figure 4.7: Optimized studied outflow parameters for the moderate year (2005)	65
Figure 4.8: Inflow and outflow hydrograph for Haditha reservoir for the moderate year (2005)	66
Figure 4.9: Optimized storage for the dry year (2009)	68
Figure 4.10: Effects of Rd reduction by 15% and 30% on the optimized storage for the dry year (2009)	68
Figure 4.11: Optimized studied outflow parameters for the dry year (2009)	69
Figure 4.12: Optimized storage for the dry year (2009)	70

Abstract

Linear Programming Method to Optimize Haditha Dam Performance

Prepared by:

Ali Muntajab I. Al-Ruwayyih

Supervisor:

Asst. Prof. Dr. Tariq J. Al-Musawi

In the present study, the optimization technique in the field of water resource management is presented in detail with the using linear programming. The proposed methodology is applied to manage the water outflow from the dam reservoir. In this context, Haditha dam in Iraq is considered as a case study. At first, the data of Euphrates river inflow, evaporation and precipitation is collected from several recently published studies. Moreover, design parameters of Haditha dam and water demands for downstream area were taken considered in the data collection process. A mathematical model that ensures the determination of optimum water quantity for various requirements is built by utilizing linear programming technique and solved by using a MATLAB program. For this purpose, the collected data is expressed and inputted in the mathematical model in the form of monthly variation. Due to large size of collected data, three hydrological cases were selected based on the total annual, flow including wet, moderate and dry years. The output results were grouped to water demand parameters for both municipal and irrigation uses. Surplus water consists of surplus water from electrical demand and spillway water. The first two result positive profit, while the remaining two result negative profit. Therefore, the objective of the optimization model is to determine the maximum monthly profit. The water balance equation is used as a constraint in the optimization model for calculating the optimized storage. In the dry year, the storage value in the studied reservoir is near to the critical value; therefore, water consumption for municipal uses should be reduced in order to prevent the water storage level from reaching its minimum limit. If this point is impossible, an additional water resource may be used to substitute the water demand deficit. For many cases, it is found that the initial storage of Haditha dam is an important parameter in the determination of the optimal solution.

Key word: Water management, Reservoir, Dams, Optimization, Linear programming, MATLAB.

Introduction

Chapter One: Introduction

1.1 Background

The availability of water in adequate quantity and safe quality is a very important issue in many areas around the world. In addition, water resource management represents one of the greatest challenges facing us globally in the 21th century. Throughout history, the availability of water played always an important role in the existence and development of numerous civilizations. Nowadays, scientific workers focus their efforts on applying the best management systems of water resources and reservoirs (Thankachana and Anitha, 2015). In addition, human beings constructed dams to benefit from retained rainfall water. In this context, Jury and **Vaux (2005)** showed that the era in which the rising demands for water could be contained by only constructing engineering infrastructures such as large dams on rivers seems to be over or nearly over. The construction of dams can be a solution for the critical problem of water scarcity if they are properly managed according to the water uses downstream the dams. Unfortunately, the current applied methods for managing water are not exhibiting the desired results or, in other words, are not efficient. Several points should be identified for successful management of water resources. First, water management methods require comprehensive and precise information on the available resources. Second, the purposes for which dams are constructed should be identified. Finally, the required mechanisms used for taking the policy decisions should be included.

Dams, in all their types, are structures that obstruct river or stream water flow to form reservoirs, by keeping water from flowing downstream. As a result, dams allow people upstream to have preferential use. The construction of dams is not only about the technical aspects related