

Isra University Faculty of Pharmacy

FORMULATION AND ANTIBACTERIAL ACTIVITY OF SILVER NANOPARTICLE HYDROGELS

By

Amani Adel Al-Aroud

Supervisor Dr. Suha Mujahed Abudoleh

Co-Supervisor Dr. Alaadin M. Alkilany

This Thesis was Submitted in Partial Fulfillment of the Requirements for the Master's Degree of Pharmaceutical Sciences.

Faculty of Graduate Studies Isra University

May, 2018

تفويض

أنا الطالبة امائي عادل عمر العرود، كلية الصيدلة ، افوض جامعة الإسراء بتزويد نسخ من رسالتي ورقياً وإلكترونياً للمكتبات أو المنظمات أو الهيئات والمؤسسات المعنية بالأبحاث والدراسات العلمية عند طلبها .

> · التوقيع : تُعْلَمُو التاريخ : ٣/٦/ ٨.٧

COMMITTEE DECISION

This Thesis/Dissertation (FORMULATION AND ANTIBACTERIAL ACTIVITY OF SILVER NANOPARTICLE HYDROGELS) was Successfully Defended and Approved on the 9th of May, 2018.

Examination Committee

Signature

Such Abridatele

Dr. Suha Mujahed Abudoleh (Supervisor) Assistant Professor of Microbiology and Biotechnology- Isra University

Dr. Alaadin M. Al-kilany (Co-supervisor) Associate Professor of Pharmaceutics and Nanoscience- The University of Jordan

Prof. Enam A. Khalil (Member)Professor of Pharmaceutics and PharmaceuticalTechnology- The University of Jordan

Dr. Samer Hasan Hussein Al-Ali (Member) Assistant Professor of Nanoscience and Drug Delivery- Isra University

Enan Kho

2,111

Du

DEDICATION

This thesis is dedicated to the soul of my father Brigadier General Adel Al-Aroud, to my beloved family, my mother and mother in law who have never failed to give reasons to be proud being their daughter, and also to my husband for his constant unconditional support, to my children Tareq and Joury whom I owe every bit of success I have ever achieved. My sisters and brothers, to my friend Suhad for her understanding and help all the way, to Fahmi, Mai and Nariman for the funny times we spent when we felt tired of working. I also dedicate this thesis to my friends all over the place for the happy and hard times we went through together during master's journey.

AKNOWLEDGEMENT

First of all, I want to thank Allah for giving me the power, patience and determination to complete this thesis.

Secondly, I would like to express my deep gratitude to my supervisors Dr. Suha Mujahed Abudoleh, Dr. Alaadin M. Alkilany, Dr. Mahmoud Alkawareek, and Dr Samer Abulatifeh whom I personally appreciate for their valuable supervision and for the good, brainstorming and inspiring conversations we used to have in the lab, and especially for the help, guidance, encouragement they gave me during the last period, thank you. Finally, I would like to thank all my dear doctors and colleagues.

TABLE OF CONTENTS

COMMITTEE DECISIONii
DEDICATION iii
AKNOWLEDGEMENTiv
TABLE OF CONTENTSv
LIST OF TABLES ix
LIST OF FIGURESx
LIST OF ABBREVIATIONS OR SYMBOLS xii
ABSTRACTxiii
Chapter 1: Introduction1
Introduction1
Research problem and significance4
Research aims and objectives5
Chapter 2: literature review
2.1. Background of silver nanoparticles
2.2. The antibacterial activity of silver nanoparticles7
2.3. Synthesis, characterization and surface functionalization of silver
nanoparticles
2.4. Optical properties of silver nanoparticles 10
2.5. Colloidal stability of silver nanoparticles and stabilization approaches

2.6. Silver nanoparticles in pharmaceutical hydrogels; therapeutic applications and
available marketed products13
2.7. Previous studies and overlooked parameters14
Chapter 3: Materials and methodology17
3.1. Synthesis and characterization of silver nanoparticles with various sizes17
3.1.1. Synthesis of 12 nm AgNPs17
3.1.2. Synthesis of 20-70 nm AgNPs18
3.1.3. Purification and characterization of AgNPs19
3.2. Evaluation of colloidal stability of AgNPs suspensions
3.3. Incorporation of AgNPs in pharmaceutical hydrogel formulation19
3.3.1. Carbopol hydrogel formulation19
3.3.2. Poloxamer (pluronic F127) hydrogel formulation20
3.3.3. Characterization of AgNPs hydrogels20
3.4. Evaluation of colloidal stability of AgNPs in hydrogels21
3.5. Evaluation of the antibacterial effect of silver nanoparticles (AgNPs)21
3.5.1. Bacterial culture condition
3.5.2. Minimum inhibitory concentration (MIC) of Silver nanoparticles22
3.5.3. Cup-Plate Assay for silver nanoparticles hydrogels23
Chapter 4: Results
4.1. Synthesis and characterization of silver nanoparticles

4.2. Colloidal and chemical stability of silver nanoparticles suspension upon
storage
4.3. Colloidal and chemical stability of AgNPs suspension upon contact with
bacterial growth medium (TSB)30
4.4. Hydrogel formulation32
4.5. Colloidal and chemical stability of AgNPs suspensions in hydrogels upon storage
and upon mixing with tryptic soy agar
4.5.1. Colloidal and chemical stability upon storage
4.5.2. Colloidal and chemical stability of AgNPs suspension in gel formulation
upon contact with bacterial growth medium (TSA)35
4.6. The antibacterial activity of AgNPs suspensions in hydrogels
4.6.1. Minimum inhibitory concentration40
4.6.2. Cup Plate Assay40
Chapter 5: Discussion45
5.1. Synthesis and characterization of silver nanoparticles (AgNPs)45
5.2. Evaluation of colloidal stability of AgNPs in suspension45
5.3. Formulation of AgNPs hydrogel and evaluation of their stability47
5.4. Evaluation of the antibacterial activity of AgNPs hydrogels
Chapter 6: Conclusion
References

Appendices	
Abstract in Arabic	

LIST OF TABLES

Table 1: Characterization of AgNPs (Mean ± SD, n=3)
Table 2: MIC of different sizes of AgNPs and AgNO3 suspensions 40
Table 3: The inhibition zone diameter of AgNPs hydrogels againstof E. $coli$ (mean \pm SD n
=3)4(
Table 4 : the inhibition zone diameter of AgNO ₃ hydrogels with different viscosities agains
E. $coli$ (mean \pm SD n =3)

Table 5: The inhibition zone diameter of AgNPs hydrogels against <i>P.aeruginosa</i> (mean \pm
SD, n =3)41
Table 6: The inhibition zone diameter of AgNPs hydrogels against S.aureus (mean \pm SD, n
=3)42
Table 7 : the inhibition zone diameter of AgNO ₃ hydrogels with different viscosities against
<i>S. aureus</i> (mean± SD, n =3)

Table 8: The inhibition zone diameter of AgNPs hydrogels against S.epider	midis (mean \pm
SD, n =3)	43

LIST OF FIGURES

Figure 1: Experimental set up to prepare AgNPs.	18
Figure 2: MIC plate design	23
Figure 3: Cup-plate assay design	24
Figure 4: UV-vis spectra of prepared AgNPs suspensions	26
Figure 5. Size distribution histograms of prepared AgNPs.	27
Figure 6. Colloidal stability of AgNPs suspensions of A) 12 nm B) 50 nm C) 70 m	m upon
storage	29
Figure 7: Colloidal stability of AgNPs suspensions of A) 12 nm B) 50 nm C) 70 nm upo	on mixing
with TSB	31
Figure 8: Photographsof AgNPs of various sizes : a) in suspension b) in pluronic	hydrogel
c) in carbopol hydrogel	
Figure 9: UV-vis spectra of AgNPs in suspension, carbopole hydrogel and pluron	ic
hydrogel	
Figure 10: Colloidal stability of AgNPs in carbopol hydrogel upon storage	
Figure 11: Colloidal stability of AgNPs in pluronic hydrogel upon storage	35
Figure 12: Colloidal stability of AgNPs in carbopol hydrogel upon exposure to TS	SA; a)
immediately b) 24 hrs	
Figure 13: Colloidal stability of AgNPs of various sizes in hydrogels upon contac	t with
TSA	
Figure 14: Colloidal stability of AgNPs in pluronic hydrogel upon exposure to try	ptic soy
agar: a) immediately b) 24 hours	

Figure 15: : UV-vis spectra of AgNPs of various sizes in pluronic hydrogel before or at
different time interval as labeled upon mixing with TSA solution
Figure 16: UV-vis spectra of TSA after 24 hours of incubation for the AgNPs pluronic gel
Figure 17: Color change upon aggregation of AgNPs46
Figure 18: Carbapol structure and Carboxylate capped nanoparticles sketch morphology 48
Figure 19: pluronic F 127 (Poloxamer 407) structure49
Figure 20: PEG capped AgNPs sketch
Figure 21: Exposed surface area of small AgNPs aggregate versus large size of AgNPs52

LIST OF ABBREVIATIONS OR SYMBOLS

AgNPs	Silver Nanoparticles.
UV-vis	Ultra violet –visible spectroscopy
XRD	X-ray diffractometry
FTIR	Fourier transform infrared spectroscopy
XPS	spectroscopy of photoelectron emitted by X-ray
DLS	dynamic light scattering
SEM	scanning electron microscopy
TEM	transmission electron microscopy
AFM	atomic force microscopy
SPR	Surface Plasmon Resonance
LSPR	localized Surface Plasmon Resonance peaks
ATCC	American Type Culture Collection
TSA	Tryptic soy agar
TSB	Tryptic soy broth
НРМС	hydroxypropyl methyl cellulose
PDI	Polydispersity Index
Z- average	average hydrodynamic size
PVP	Polyvinylpyrrolidone
BSA	Bovine serum albumin
PH	Potency of hydrogen
НРМС	Hydroxyl propyl methyl cellulose polymer
SD	Standard deviation
NP	Nanoparticles
MDR	Multidrug resistant
E. coli	Escherichia coli
P. aeruginosa	Pseudomonas aeruginosa
S. aureus	Staphylococcus aureus
S. epidermidis	Staphylococcus epidermidis

Formulation and Antibacterial Activity of Silver Nanoparticle Hydrogels

By

Amani Adel Al-Aroud

Supervisor

Dr. Suha Mujahed Abudoleh

Co-supervisor

Dr. Alaadin M. Alkilany

ABSTRACT

The antibacterial activity of silver nanoparticles (AgNPs) is well documented. AgNPs have a broad spectrum activity against gram negative and gram positive bacteria. Most reports evaluated the antibacterial activity of AgNPs in suspensions and not in clinically relevant vehicles such as hydrogels. In this work we prepared a library of monodispersed AgNPs with various sizes and we described the successful incorporation of these nanoparticles into two type of hydrogels: Carbopol (represented anionic polymer) and Pluronic (represented nonionic polymer). AgNPs exhibit excellent colloidal stability in both hydrogels upon storage. However, aggregation occurred upon contact with Tryptic soy agar (bacterial growth media) for carbopol hydrogels but not for pluronic hydrogels.

AgNPs showed different antibacterial activity in both hydrogels, with a common trend supported higher activity for AgNPs with smaller size. This work highlighted the importance of considering nanoparticles size and the type of gelling agent when formulations AgNPs hydrogel which affect their colloidal stability and antibacterial activity.