

I

PLASMA AND BRAIN PHARMACOKINETICS OF DICLOFENAC, IBUPROFEN AND THEIR HYDROXYETHYL ESTERS

By:

Rawan Radi Al-Abadleh

Supervisor:

Dr. Ahmad A.Talhouni

Co-Supervisor:

Dr. Jamal AL-Jilani

This Thesis Was Submitted in Partial Fulfillment of the Requirements for the Master's Degree in pharmaceutical sciences

Faculty of Graduate Studies

Isra University, Amman, Jordan

May,2018

COMMITTEE DECISION

Ш

Thesis (PLASMA AND BRAIN PHARMACOKINETICS OF DICLOFENAC, IBUPROFEN AND THEIR HYDROXYETHYL ESTERS).

Was successfully defended and approved on ------

Examination committee

Dr. Ahmad A.Talhoni (Supervisor)

Assist. Prof. of pharmacology

Prof. Jamal AL-Jilani (Co-Supervisor)

Prof. of Medicinal Chemistry

Dr. Jamal Alkrad (examiner)

Assist. Prof of pharmaceutical technology and biopharmacy

Prof. Nasir Idkaidek (examiner)

Prof. of Pharmaceutics

signature

AUTHORIZATION STATEMENT

I, Rawan Radi AL-abadleh, authorize Israh University to supply hard and electronic copies of my thesis to libraries, establishments, or bodies and institutions concerned with research and scientific studies upon request, according to the university regulations.

Name : Rawan Radi AL-abadleh

Date :24/5/2018

Signature :

DEDICATION

This thesis is dedicated to my parents Radi & Najah who have always loved me unconditionally and whose good examples have taught me to work hard for the things that I aspire to achieve.

This work is also dedicated to my brother, Mohammad and to my sisters, Reham, Ruba, Baraa, Esraa, Anwar & Jomana. The greatest dedication is to my dear uncle Faisal Jaafreh.

ACKNOWLEGEMENT

Thank God who helped me to accomplish this work

First and foremost, I have to thank my parents for their love and support throughout my life. Thank you both for giving me strength to reach for the stars and chase my dreams. My only brother and six sisters deserve my wholehearted thanks as well.

There have been many people who have walked an alongside me during the last 3years. They have guided me, placed opportunities in front of me and showed me the doors that might be useful to open. I would like to thank each and every one of them

I would especially to thank Dr. Jamal Al.jilani & Dr. Ahmad A.Talhouni.

Dr.Jamal Al.jilani thank for your guidance, encouragement and contagious positive attitude. I am extremely grateful for everything you have taught me, you have been awesome. Thanks also to my supervisor Dr. Ahmad A.Talhouni for good advice during the final writing process.

Especially thanks to Research Laboratory Supervisor Mousa Siam for all guidance and thanks for every one worked in the faculty of pharmacy.

To all my friends, thank you for your understanding and encouragement in many, many moments of crisis. Your friendship makes my life a wonderful experience . I cannot list all the names here, but you are always on my mind.

This thesis is only a beginning of my journey.

Table of content

TITILE PAGE	Ι
COMMITTEE DECISION	II
AUTHORIZATION STATEMENT	III
DEDICATION	IV
ACKNOWLEGEMENT	V
TABLE OF CONTENT	VI
LIST OF TABLES	IX
LIST OF FIGURES	X
LIST OF ABBREVIATION & SYMBOLS	XIV
ABSTRACT	XVI
CHAPTER ONE	
1.Introduction	1
1.1 Significance of the study	4
1.2 Aim of the study	4
CHAPTER TWO	
2.Literature Review	5
2.1 Central nervous system (CNS)	5
2.1.1 Blood-brain barrier	6
2.1.1.1 Introduction	6
2.1.1.2 Morphology and function	6
2.1.1.3 Physiochemical characteristics needed for BBB permeation	10
• Lipophilicity	11
• Molecular weight	11
• H-bonding	12
• Plasma area under the curve	12

2.1.1.4Transport routes across the BBB	13

Carrier-mediated transport (CMT)	14
Receptor-mediated transcytosis (RMT)	14
Adsorptive-mediated transcytosis (AMT)	14
Cell-mediated transcytosis (CMT)	15
Active efflux pumps or transporters	15
2.1.1.5 Methods for improving brain targeting	15
Prodrugs and LAT1 system	22
Prodrugs and GLUT1 system	23
Prodrugs and the SVCT 2 system	23
2.1.2 Blood-cerebrospinal fluid barrier (BCSFB)	24
2.2 Neuroprotection	25
2.2.1 Alzheimer's disease (AD)	25
2.2.2 Non-steroidal anti-inflammatory drugs (NSAIDs)	26
2.2.3 Non-steroidal anti-inflammatory drugs (NSAIDs) and its role as	
neuroprotective in Alzheimer's disease (AD)	
CHAPTER THREE	
3.Experimental	38
3.1 Chromatographic conditions	
3.2 Calibration curves	
3.3 In vitro study	42
3.3.1 stability of HEI in different buffer solutions	42
3.3.2 stability of HEI in rat plasma	

3.3.3 stability of HEI&HED in rat brain homogenate	43
3.4 In vivo study	43
3.5 Pharmacokinetic and statistical analysis	45
CHAPTER FOUR	
4.Result and discussion	46
4.1In vitro study of HED & HEI in rat	47
4.1.1 Stability of HED & HEI in the buffer solution	47
4.1.2 Stability of HED & HEI in rat plasma	49
4.1.3 Stability of HED & HEI in rat brain homogenate	51
4.2 In vivo study of HED & HEI in rat	56
4.2.1 plasma pharmacokinetics	56
4.2.2 Brain pharmacokinetics	68
CHAPTER FIVE	
5.Conclusions & Recommendations	83
5.1Conclusions	83
5.2 Recommendations	85
REFERENCES	86
APPENDIX 1	96
APPENDIX 2	97
APPENDIX 3	98
APPENDIX 4	99
APPENDIX 5	100
APPENDIX 6	101
APPENDIX 7	102

List of Tables

Table number	Title of Table	Page number
1.1	Compounds that evaluated in the present study	3
4.1	Stability of HEI in different pH values at 37°C.	48
4.2	Stability of HED in different pH at 37°C *	49
4.3	Kinetic data for the hydrolysis of HEI & HED in plasma and in the brain after incubation at 37°C.	
4.4	Pharmacokinetic parameters of ibuprofen after IP administration of ibuprofen and prodrugs (HEI) as well diclofenac after IP administration of diclofenac and prodrugs (HED) in plasma	61
4.5	The ratio between the value of C _{max} and the administered dose of the compound.	
4.6	Comparison of compounds based on M.W, pka and Log P.	67
4.7	Pharmacokinetic parameters of ibuprofen in the brain after IP administration of ibuprofen and prodrugs (HEI)	77
4.8	Dimensional analysis	78
4.9	Brain/plasma ratio of ibuprofen, diclofenac and the two prodrugs	81

List of Figures

Figures number	Title of Figure	Page
2.1	Schematic represent the blood-brain barrier (BBB) and other constituents	7
	of a neurovascular unit.	
2.2	Structural differences between a peripheral and a cerebral capillary.	8
2.3	Transport ways of the substances across the BBB.	13
2.4	Classification of various approaches for brain targeting.	16
2.5	Schematic representation of prodrug and its metabolism.	17
2.6	Chemical structure of morphine, heroin, codeine respectively.	19
2.7	Structure of 1,3-diacetyl-2-ketoprofen glyceride DAKG.	20
2.8	The principle of brain targeting by CDS.	21
2.9	Renovation of dopamine from its amide-form of CDS in the CNS.	21
2.10	Chemical structure of dopamine, L-DOPA, phenylalanine respectively.	22
2.11	Chemical structure of the conjugation of dopamine and L-DOPA with	23
	glucose respectively.	
2.12	Chemical structure of vitamin C and their conjugate with	24
	diclophenamic acid.	
2.13	Mechanism of action of NSAIDs.	27
2.14	Chemical structure of diclofenac and anthranilic acid (from left to right).	28
2.15	Chemical structure of ibuprofen.	29
2.16	Dexibuprofen derivatives modified by ethanolamine structure.	34
2.17	Chemical structure of flurbiprofen and ester bond derivatives.	35
2.18	Chemical structure of naproxen esters containing DHP, ascorbate prodrug	35
	and dehydroascorbate prodrug respectively.	
2.19	Chemical structure of the ibuprofen derivatives linked to C2 (I), C3	36
	(II), C4(III),C6(IV) positions of glucose.	

2.20	Structure of the prodrugs of naproxen.	37
2.21	Structure of C6-O-ibuprofen-AA(1), C5-O-ibuprofen-AA (2), C5-O-&	37
	C6-O-di- ibuprofen forms of AA (3).	
3.1	The calibration curve of the Diclofenac (A) & prodrug HED (B)	39
3.2	The calibration curve of the Ibuprofen in plasma (A) & in brain (B).	40
3.3	The calibration curve of the Prodrug HEI in plasma (A) & in brain (B).	41
3.4	Technique for giving the rat intraperitoneal.	44
4.1	Stability of HEI in pH 2.5 & pH 5 phosphate buffer.	47
4.2	Stability of HEI in pH7.4 phosphate buffer.	48
4.3	The hydrolysis of HEI after incubated it in rat plasma at 37°C.	50
4.4	First order plot for the hydrolysis of HEI prodrug in rat plasma.	51
4.5	The hydrolysis of HEI after incubation in rat brain at 37°C.	52
4.6	The hydrolysis of HED after incubation in rat brain at 37°C.	52
4.7	First order plot for the hydrolysis of HEI (A) & HED (B) prodrug in rat	53
	brain.	
4.8	The approximate similarity between the structure of phenylalanine and	54
	HEI.	
4.9	Structure of the prodrug HED.	55
4.10	Structure of prodrug of naproxen.	55
4.11	The hydrolysis of HEI and regeneration of its parent in plasma after IP	57
	administration of HEI (60mg/kg) to rats.	
4.12	Ibuprofen concentration in the plasma (µg/ml) vs time (minutes) after IP	58
	administration of ibuprofen (50mg/kg) and the HEI (60mg/kg) in rats.	
4.13	The hydrolysis of HED and regeneration of its parent in plasma after IP	59
	administration of HED (57mg/kg) to rats.	

		<u> </u>
4.14	Diclofenac concentration in the plasma (μ g/ml) vs time (minutes) after IP	60
	administration of diclofenac (50mg/kg) and the HED (57mg/kg) in plasma	
	in rats.	
4.15	Comparison between the concentration of diclofenac in plasma after IP	60
	administration of diclofenac (50mg/kg) and HED (57mg/kg) at 10 and 60	
	min.	
4.16	Distribution of the Peritoneum in rats.	64
4.17	Illustration of how drug transfer from the peritoneal cavity into	64
	surrounding tissues, (L for liver, V for hollow viscera, and P for the	
	parietal tissue).	
4.18	Ibuprofen concentration in the brain (µg/ml) vs time (minutes) after IP	69
	administration of ibuprofen (50mg/kg) and HEI (60mg/kg) in rats.	
4.19	Ibuprofen concentration after IP administration of ibuprofen in plasma	70
	and brain (A) and the ibuprofen concentration after IP administration of	
	HEI in plasma and brain (B).	
4.20	Ibuprofen concentrations (μ g/ml) in the plasma and brain after IP	71
	administration of ibuprofen (50mg/kg).	
4.21	Ibuprofen concentrations (μ g/ml) in the plasma and brain after IP	71
	administration of prodrug HEI (60mg/kg).	
4.22	Comparison between the concentration of ibuprofen in plasma and brain	72
	after IP administration of ibuprofen (50mg/kg) or prodrug HEI (60	
	mg/kg) at 5,10.20.30 and 50 minutes.	
4.23		73
	Diclofenac concentration in the brain $(\mu g/g)$ vs time (min) after	
	intraperitoneal administration of diclofenac (50mg/kg) and HED	
	(57mg/kg).	
4.24	Diclofenac concentration after IP administration of diclofenac in plasma	74
	and brain (A) and the diclofenac concentration after IP administration of	
	HED in plasma and brain (B	

4.25	Diclofenac concentrations (μ g/ml) in the plasma and brain after IP	75
	administration of diclofenac (50mg/kg).	
4.26	Diclofenac concentrations (μ g/ml) in plasma and brain after IP	76
	administration of prodrug HED (57mg/kg).	
4.27	Comparison between the concentration of diclofenac in plasma and brain	
	after 10 minutes of IP administration of diclofenac (50mg/kg) and HED	
	(57mg/kg).	
4.28	Chemical structure of dexibuprofen prodrug.	82
4.29	Comparison between the two NSAIDs ibuprofen and diclofenac.	82
4.30	Comparison between the two prodrug HEI & HED	82

List of abbreviation & symbols

Abbreviation or Symbols	Definition
%ID/g	Percentage of injected dose that is delivered per gram brain

AA	Ascorbic Acid
AchE	Acetylcholinesterase
AD	Alzheimer's Disease
AJ	Adherens Junction
AJ	
	Adsorptive-Mediated Transcytosis
APP	Amyloid β Protein Precursor
AUC 0-t	Area under the concentration up to the last measurable
Αβ	Amyloid Beta
BBB	Blood-Brain Barrier
BchE	Butyryl cholinesterase
BCSFB	Blood-Cerebrospinal Fluid Barrier
CDS	Chemical Delivery System
C _{max}	Maximum Concentration
СМТ	Carrier-Mediated Transport
CNS	Central Nervous System
COX	Cyclooxygenase
СР	Choroid Plexus
CSF	Cerebrospinal Fluid
CVOs	Circumventricular Organ
Da	Dalton
DAKG	Diacetyl Ketoprofen Glyceride
DHAA	Dehydro-Ascorbic Acid
DHP	Dihydropyridine/Pyridinium
ECF	Extracellular fluid
EP	Eppendorf tube
GIT	Gastrointestinal Tract
GLUT1	Glucose-Transporter 1
HED	Hydroxyethyl Diclofenac
HEI	Hydroxyethyl Ibuprofen
HPLC	High Performace Liquid Chromatography
IP	
IP	Intraperitoneal

ISF	Interstitial Fluid
Κ	Lipid- water partition coefficient
K01	The rate of absorption
K10	The rate of elimination
K _{disapp}	First-order rate constant
Km	Equililbrium distribution constant
L	Membrane thickness
LAT1	L-type Amino acid Transporter 1
L-DOPA	L-dihydroxyphenyl Alanine
Log P	Logarithm of the n-octanol-water partition coefficient
MW	Molecular Weight
NSAIDs	Non-steroidal anti-inflammatory drugs
pAUC	Plasma area under the curve
PG	Prostaglandin
P-gp	P-glycoprotein
Pka	Dissociation constant
Pm	Permeability
PS	Permeability-surface area
RMT	Receptor-Mediated Transport
SVCT2	Sodium-Dependent Vitamin C Transporter 2
T _{1/2}	Half-live
ТЈ	Tight Junction
T _{max}	Time at which the maximum concentration

PLASMA AND BRAIN PHARMACOKINETICS OF DICLOFENAC, IBUPROFEN AND THEIR HYDROXYETHYL ESTERS

By:

Rawan Radi Al-Abadleh

Supervisor:

Dr. Ahmad A.Talhouni

Co-Supervisor:

Dr. Jamal AL-Jilani

ABSTRACT

Many compounds have a limited ability to penetrate into the central nervous system (CNS) due to the existence of the blood-brain barrier (BBB). The CNS distribution of non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen and diclofenac is of interest because is an effective therapeutic agent for the treatment of neurodegenerative disease in which the long-term use of NSAIDs may reduce the risk, or delay the onset of Alzheimer's disease (AD). The aim of this study was to evaluate the brain-targeting efficiency of two prodrugs of NSAIDs, hydroxyethyl ibuprofen (HEI) and hydroxyethyl diclofenac (HED) after intraperitoneal (IP) administration to rats using the pharmacokinetic analysis in plasma and brain. In vitro stabilities of the two prodrugs were evaluated to determine both their stability in the aqueous medium, and their feasibility to undergo enzymatic cleavage by esterases in biosample, also in vivo study was performed on rats for pharmacokinetic studies. The concentration of the compounds in biosamples including plasma and brain were measured using High performance liquid chromatography (HPLC). The mobile phase that used for diclofenac and HED was consisted of 80% methanol, 20% water, to each litre, 2ml acetic acid was added. While the mobile phase for ibuprofen and HEI composed of 20mMphosphate buffer solution(pH2.5) and acetonitrile in volume ratios of 55:45 and 56:54 for plasma and brain sample respectively the pH for the entire mobile phase was 5. The result showed that the AUC _{brain}/AUC _{plasma} ratio was 0.16, 0.16, 1.234, 0.027 for ibuprofen, HEI, HED, and diclofenac respectively. The HED exhibited enhancement of brain targeting as prodrug where its ratio is 45 fold than diclofenac. The ratio for HEI and ibuprofen is the highest but at the same time it is equal to each other, despite that the AUC _{plasma} of ibuprofen is twice more than for HEI, whereas the ibuprofen level in brain and plasma are highly correlated to each other, this is may be explained that the rate of absorption of ibuprofen resulted from IP administration of HEI to the brain is more than the other and the T_{max} is very shorter 2.472. In conclusion, the hydroxyethyl-related structure may play an important role in transport across the BBB.