# METRONIDAZOLE NANO POLYMERS: PREPARATION, CHARACTERIZATIONS AND RELEASE STUDY

By

Hazem Abdul Kader Sabbagh

Supervisor

Dr. Samer Hasan Hussein-Al-Ali

**Co-Supervisor** 

Dr. Zead Abudayeh

This Thesis was Submitted in Partial Fulfillment of the Requirements for the Master's Degree of Pharmaceutical Sciences

> Faculty of Graduate Studies Isra University May, 2018

Abstract of thesis presented to the Senate of Isra University in fulfillment of the requirements for the degree of Master

### METRONIDAZOLE NANO POLYMERS: PREPARATION, CHARACTERIZATIONS AND RELEASE STUDY

By

#### Hazem Abdul Kader Sabbagh

#### May 2018

The administration of drugs designed to be given as a single dose rather than multiple doses has recently been made possible using extended release formulation approach; the release of the drugs can be accomplished over long periods of time, enabling an almost constant level of the drug to be maintained in the bloodstream. Moreover, extended release formulations increase the clinical efficacy of drugs. The introduction of drug nanocomposites as extended release vehicles has provided a breakthrough in novel drug delivery systems in the field of pharmaceutical technology, for which nanopolymers are widely used for this purpose. This study aimed to achieve the preparation of new extended release formulation of metronidazole (MET) via loading of the MET onto nanopolymers in order to increase the residence time in the body by extended release.

Three nanocomposites were prepared using chitosan (CSNPs), alginate (AlgNPs) and chitosanalginate (CS-AlgNPs) nanoparticles; MET-CSNPs, MET-AlgNPs and MET-CS-AlgNPs nanocomposites, respectively. The prepared nanocomposites were studied for their physiochemical properties, loading efficiency (LE), encapsulation efficiency (EE), and release. The MET-CSNPs nanocomposites were prepared by mixing different concentrations of CS (0.5, 1, and 2 mg/mL) with TPP solutions (0.5, 1, 2.5 mg/mL) under controlled pH at 4.5 using NaOH. The product was centrifuged at 10000 rpm for 15 min and dried. The same procedure was repeated for the preparation of MET-CSNPs nanocomposites using different concentrations of MET (100, 200, and 400 mg).

The MET-AlgNPs were prepared by ionic gelation method between sodium alginate (1, 2 and 4 mg/mL) and cross-linking agent of  $CaCl_2$  (0.5, 0.75, and 1% w/v) in the presence of MET (100, 200, and 400 mg).

MET-CS-AlgNPs nanocomposites were prepared using solutions of CS (0.5, 1 and 2 mg/mL), sodium alginate (2 and 4 mg/mL) and CaCl<sub>2</sub> (0.5 and 1%) at 100 mg MET concentration.

XRD spectra of MET-CSNPs showed two peaks at  $2\theta=12^{\circ}$  and  $23.7^{\circ}$ , indicating amorphous forms due to cross-linkage with TPP. XRD spectra of MET-AlgNPs showed three diffraction peaks at  $2\theta$  values 14.1°, 21.8° and 39.1°. XRD patterns of MET-CS-AlgNPs showed overlap between patterns of CS and Alg, which lead to the appearance of peaks at  $2\theta = 14.5^{\circ}$  and  $20.6^{\circ}$ .

The FTIR data for all nanocomposites prepared in this work showed the spectra of nanopolymers (CSNPs, AlgNPs and CS-AlgNPs) as well as the spectra of MET. This result indicates the incorporation of MET in the nanopolymers.

Correlation and multiple regression analyses were used in this work to examine the relationship between dependant variables (EE, LE, particle size and zeta potential) and independent variables (concentrations of CS, TPP and MET) for all nanocomposites. At MET-CSNPs nanocomposites, the MET concentration had a significant effect on the EE, LE and particle size. The TPP concentration significantly affected the particle size and zeta potential. In addition, CS concentration only affected the LE and zeta potential.

In the case of MET-AlgNPs nanocomposites, the MET concentration only had a significant effect on the zeta potential. In addition, the variable  $CaCl_2$  had a significant effect on the LE only. On the other hand, the Alg concentrations affected all dependent variables significantly except the zeta potential.

In regards to the MET-CS-AlgNPs nanocomposites, the independent variables were Alg,  $CaCl_2$  and CS concentrations. The Alg concentrations significantly affected all dependant variables except EE. In addition, the  $CaCl_2$  concentrations significantly affected all dependant variables except LE, whereas the CS concentrations significantly affected the EE and particle size.

Extended release study of MET from its respective nanocomposites was carried out using 0.1N HCl and showed that the release rate of MET from the MET-CSNPs nanocomposites was slower than MET-AlgNPs and MET-CS-AlgNPs. These results indicate extended release of the drug from its respective nanocomposites, and therefore these nanocomposites have good potential to be used as extended-release formulation of the drugs.

# نموذج تفويض

أنا ...... أفر سالتي المرابع المعة الإسراء بتزويد نسخة من رسالتي /أطروحتي للمكتبات أو المؤسسات أو الهيئات أو الاشخاص عن طلبها حسب التعليمات النافذة في الجامعة.

> التوقيع: التاريخ:

## Isra University

## **Authorization Form**

I, ....., authorize Isra University supply copies of my Thesis/ Dissertation to libraries or establishments or individuals on request, according to Isra University regulations.

Signature:

Date:

### **COMMITTEE DECISION**

This Thesis/Dissertation (**METRONIDAZOLE NANO POLYMERS: PREPARATION**, **CHARACTERIZATIONS AND RELEASE STUDY**) was successfully Defended and Approved on 29<sup>th</sup>May, 2018.

| Examination Committee                                   | <u>Signature</u> |
|---------------------------------------------------------|------------------|
| Dr. Samer Hasan Hussein-Al-Ali (Supervisor).            |                  |
| Assistant Professor of Nanosciences- Isra University    |                  |
| Dr. Zead Abudayeh (Co-supervisor).                      |                  |
| Assistant Professor of Pharmaceutics- Isra University   |                  |
| Dr. Eman Al Ezmaleh (Internal Member).                  |                  |
| Assistant Professor of Pharmaceutics and Pharmaceutical |                  |
| Technology- Isra University                             |                  |
| Dr. Ahmad Aljaberi (External Member).                   |                  |
| Associate professor of Pharmaceutics and Drug Delivery  |                  |
| Applied Science University                              |                  |

#### ACKNOWLEDGEMENT

I would first like to thank my thesis advisor Dr. Samer Al-Ali. The office of Dr. Samer Al-Ali was always open whenever I ran into a trouble spot or had a question about my research or writing. He consistently allowed this paper to be my own work, but steered me in the right direction whenever he thought I needed it.

I would also like to thank all who were involved in the research project: Dr. Zead Abudaye and Dr. Suha Abudoleh at the Faculty of pharmacy, Isra University.

Finally, I must express my very profound gratitude to my parents and to my wife for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing of this thesis. This accomplishment would not have been possible without them.

### **TABLE OF CONTENTS**

ABSTRACT

Page

II

| COMMITTEE DECISION V |                |                                                            | VI                                        |      |
|----------------------|----------------|------------------------------------------------------------|-------------------------------------------|------|
| ACKNOWLEDGEMENT      |                |                                                            | VII                                       |      |
| LIST OF TABLES       |                |                                                            | XI                                        |      |
| LIST OF FIGURES      |                |                                                            | XII                                       |      |
| L                    | IST O          | F ABBR                                                     | EVIATIONS                                 | XIIV |
|                      |                |                                                            |                                           |      |
| C                    | HAPT           | ER                                                         |                                           |      |
| 1                    | INTI           | RODUC                                                      | TION                                      | 1    |
|                      | 1.1            | Backgr                                                     | round of study                            | 1    |
|                      | 1.2            | Problem                                                    | m Statement                               | 2    |
|                      | 1.3            | Objecti                                                    | ives                                      | 3    |
|                      |                |                                                            |                                           |      |
| 2                    | LITI           | ERATUI                                                     | RE REVIEW                                 | 4    |
|                      | 2.1            | Nanopa                                                     | articles                                  | 4    |
|                      | 2.2            | Metron                                                     | nidazole                                  | 4    |
|                      |                | 2.2.1                                                      | The mechanism of action for metronidazole | 5    |
|                      | 2.3            | 2.3 Alginate 6                                             |                                           | 6    |
|                      |                | 2.3.1                                                      | Structure of sodium alginate              | 6    |
|                      |                | 2.3.2                                                      | Application of sodium alginate            | 6    |
|                      |                | 2.3.3                                                      | Basic properties of sodium alginate       | 7    |
|                      |                | 2.3.4                                                      | Preparation of alginate nanoparticles     | 8    |
|                      |                | 2.3.5                                                      | Application of alginate nanoparticles     | 8    |
|                      | 2.4 Chitosan 9 |                                                            | 9                                         |      |
|                      |                | 2.4.1                                                      | Structure of chitosan                     | 9    |
|                      |                | 2.4.2                                                      | Application of chitosan                   | 10   |
|                      |                | 2.4.3                                                      | Basic properties of chitosan              | 11   |
|                      |                | 2.4.4                                                      | Preparation of chitosan nanoparticles     | 12   |
|                      | 2.5            | 2.5 Studies on loading metronidazole on others carriers 15 |                                           |      |

|   | 2.6 | Extended release 1                                       |                                                      | 16 |
|---|-----|----------------------------------------------------------|------------------------------------------------------|----|
|   | 2.7 | Burst release 1                                          |                                                      |    |
|   | 2.8 | Kinetic models 1                                         |                                                      |    |
| 3 | MET | ETHODOLOGY                                               |                                                      |    |
|   | 3.1 | Materials                                                |                                                      |    |
|   | 3.2 | Preparation of nanoparticles and nanocomposites          |                                                      |    |
|   |     | 3.2.1                                                    | CSNPs and MET-CSNPs nanocomposites                   | 19 |
|   |     | 3.2.2                                                    | AlgNPs and MET-AlgNPs nanocomposites                 | 20 |
|   |     | 3.2.3                                                    | CS-AlgNPs and MET-CS-AlgNPs nanocomposites           | 21 |
|   | 3.3 | Physio-chemical analysis and characterizations 2         |                                                      | 21 |
|   |     | 3.3.1                                                    | Powder X-Ray Diffraction                             | 21 |
|   |     | 3.3.2                                                    | Infrared spectroscopy                                | 21 |
|   |     | 3.3.3                                                    | The metronidazole loading and encapsulation          | 22 |
|   |     |                                                          | efficiency                                           |    |
|   |     | 3.3.4                                                    | The particle size and zeta potential of particles    | 23 |
|   |     | 3.3.5                                                    | Extended release study of the metronidazole from the | 24 |
|   |     |                                                          | respective nanocomposites                            |    |
| 4 | RES | ESULTS AND DISCUSSION                                    |                                                      |    |
|   | 4.1 | Characterization of CSNPs nanoparticles and MET-CSNPs 25 |                                                      |    |
|   |     | nanocomposites                                           |                                                      |    |
|   |     | 4.1.1                                                    | XRD for MET-CSNPs nanocomposites                     | 25 |
|   |     | 4.1.2                                                    | FTIR spectroscopic analysis of MET-CSNPs             | 26 |
|   |     |                                                          | nanocomposites                                       |    |
|   |     | 4.1.3                                                    | Effect of CS, MET and TPP concentrations on          | 28 |
|   |     |                                                          | encapsulation efficiency and loading efficiency of   |    |
|   |     |                                                          | MET-CSNPs nanocomposites                             |    |
|   |     | 4.1.4                                                    | The Effect of CS, MET and TPP concentrations on      | 31 |
|   |     |                                                          | particle size and zeta potential of MET-CSNPs        |    |
|   |     |                                                          | nanocomposites                                       |    |
|   |     | 4.1.5                                                    | Release study of MET from MET-CSNPs                  | 36 |
|   |     |                                                          | nanocomposites                                       |    |
|   | 4.2 | Charact                                                  | erization of AlgNPs nanoparticles and MET-AlgNPs     | 38 |
|   |     | nanocomposites                                           |                                                      |    |

IX

- 4.2.1 XRD for MET-AlgNPs nanocomposites 38
- 4.2.2 FTIR spectroscopic analysis of AlgNPs and MET- 39 AlgNPs
- 4.2.3 Effect of Alg, MET and CaCl<sub>2</sub> concentrations on 40 encapsulation efficiency and loading efficiency of MET-AlgNPs nanocomposites
- 4.2.4 The Effect of Alg, MET and CaCl<sub>2</sub> concentrations on 43 particle size and zeta potential of MET-AlgNPs nanocomposites
- 4.2.5 Release study of MET from MET-AlgNPs 47 nanocomposites
- 4.3 Characterization of CS-AlgNPs nanoparticles and MET-CS- 48 AlgNPs nanocomposites
  - 4.3.1 XRD for MET-CS-AlgNPs nanocomposites 48
  - 4.3.2 FTIR spectroscopic analysis of CS-AlgNPs and MET- 49 CS-AlgNPs
  - 4.3.3 Effect of Alg, CaCl<sub>2</sub> and CS concentrations on 50 encapsulation efficiency and loading efficiency of MET-CS-AlgNPs nanocomposites
  - 4.3.4 The Effect of Alg, CaCl<sub>2</sub> and CS concentrations on 51 particle size and zeta potential of MET-CS-AlgNPs nanocomposites
  - 4.3.5 Release study of MET from MET-CS-AlgNPs 53 nanocomposites
- 5 CONCLUSIONS AND RECOMMENDATION FOR FURTHER 55 RESEARCH
- 6 REFERENCES577 APPENDICES69

### LIST OF TABLES

| Table 4.1 | The effects of chitosan to TPP mass ratio on the encapsulation   | 31 |
|-----------|------------------------------------------------------------------|----|
|           | efficiency and loading efficiency                                |    |
| Table 4.2 | The effects of chitosan to TPP mass ratio on the size of MET-    | 34 |
|           | CSNPs nanocomposites                                             |    |
| Table 4.3 | The SPSS data analysis for MET-CSNPs nanocomposites              | 35 |
| Table 4.4 | The correlation coefficients $(R^2)$ obtained by fitting the MET | 37 |
|           | release data from MET-CSNPs nanocomposites in 0.1N HCl.          |    |
| Table 4.5 | The SPSS data analysis for MET-AlgNPs nanocomposites             | 45 |
| Table 4.6 | The correlation coefficients $(R^2)$ obtained by fitting the MET | 47 |
|           | release data from MET-AlgNPs nanocomposites in 0.1N HCl          |    |
| Table 4.7 | Comparison between MET-CS-AlgNPs and MET-AlgNPs                  | 52 |
|           | nanocomposites at different parameters                           |    |
| Table 4.8 | The SPSS data analysis for MET-CS-AlgNPs nanocomposites          | 53 |
| Table 4.9 | The correlation coefficients $(R^2)$ obtained by fitting the MET | 54 |
|           | release data from MET-CS-AlgNPs nanocomposites in 0.1N           |    |
|           | HCl                                                              |    |
|           |                                                                  |    |

### LIST OF FIGURES

| Figure 2.1  | Chemical structure of metronidazole                                                                                       | 5  |
|-------------|---------------------------------------------------------------------------------------------------------------------------|----|
| Figure 2.2  | Chemical structure of sodium alginate                                                                                     | 6  |
| Figure 2.3  | Chemical structures of chitin and chitosan                                                                                | 10 |
| Figure 2.4  | Preparation chitosan nanoparticles by reverse micellar method                                                             | 13 |
| Figure 2.5  | Preparation chitosan particles by Sieving method                                                                          | 14 |
| Figure 2.6  | Preparation chitosan nanoparticles by ionic gelation method                                                               | 15 |
| Figure 4.1  | XRD diffraction spectra of MET (A), CSNPs (B) and MET-CSNPs (C)                                                           | 26 |
| Figure 4.2  | FTIR spectra of n-CS (A) , CSNPs (B) , MET (C) and MET-CSNPs (D)                                                          | 27 |
| Figure 4.3  | Effect of CS, MET and TPP concentrations on encapsulation efficiency and loading efficiency                               | 29 |
| Figure 4.4  | Effect of CS, MET and TPP concentrations on particle size and zeta potential                                              | 33 |
| Figure 4.5  | <i>In vitro</i> release behaviours of MET from MET-CSNPs nanocomposites in 0.1N HCl                                       | 37 |
| Figure 4.6  | XRD diffraction spectra of MET (A), AlgNPs (B) and MET-AlgNPs (C)                                                         | 38 |
| Figure 4.7  | FTIR spectra of n-Alg, AlgNPs, MET and MET-AlgNPs                                                                         | 40 |
| Figure 4.8  | Effect of Alg, MET and CaCl <sub>2</sub> concentrations on encapsulation efficiency and loading efficiency for MET-AlgNPs | 42 |
| Figure 4.9  | Effect of Alg, MET and $CaCl_2$ concentrations on particle size and zeta potential                                        | 44 |
| Figure 4.10 | <i>In vitro</i> release behaviours of MET from MET-AlgNPs nanocomposites in the 0.1N HCl                                  | 47 |
| Figure 4.11 | XRD diffraction spectra of MET (A), CS-AlgNPs (B) and MET-<br>CS-AlgNPs (C)                                               | 48 |

| Figure 4.12 | FTIR spectra of MET (A), CS-AlgNPs (B) and MET-CS-AlgNPs (C)                                                               | 49 |
|-------------|----------------------------------------------------------------------------------------------------------------------------|----|
| Figure 4.13 | Effect of Alg, CaCl <sub>2</sub> and CS concentrations on encapsulation efficiency and loading efficiency of MET-CS-AlgNPs | 50 |
| Figure 4.14 | Effect of Alg, CaCl <sub>2</sub> and CS concentrations on particle size and Zeta potential of MET-CS-AlgNPs                | 51 |
| Figure 4.15 | <i>In vitro</i> release behaviours of MET from MET-CS-AlgNPs nanocomposites in the 0.1N HCl.                               | 54 |

## LIST OF ABBREVIATIONS OR SYMBOLS

| MET               | Metronidazole                                 |
|-------------------|-----------------------------------------------|
| CSNPs             | Chitosan nanoparticles                        |
| AlgNPs            | Alginate nanoparticles                        |
| CS-AlgNPs         | Chitosan-Alginate nanoparticles               |
| MET-CSNPs         | Metronidazole-Chitosan nanoparticles          |
| MET-AlgNPs        | Metronidazole-Alginate nanoparticles          |
| MET-CS-AlgNPs     | Metronidazole-Chitosan-Alginate nanoparticles |
| CS                | Chitosan                                      |
| Alg               | Sodium alginate                               |
| LE                | Loading efficiency                            |
| EE                | Encapsulation Efficiency                      |
| HPLC              | High-performance liquid chromatography        |
| ТРР               | Tri-Poly-Phosphate                            |
| NaOH              | Sodium hydroxide                              |
| CaCl <sub>2</sub> | Calcium Chloride                              |
| XRD               | X-ray diffraction                             |
| FTIR              | Fourier-transform infrared spectroscopy       |
| PBS               | Phosphate Buffered Saline                     |
| UV-Vis            | Ultraviolet-visible spectroscopy              |
| DLS               | Dynamic light scattering                      |
| BSA               | Bovine serum albumin                          |
| PDI               | Polydispersity index                          |
| R                 | Correlation of coefficient                    |
| $\mathbb{R}^2$    | Coefficient of determination                  |
| SPSS              | Statistical Package for the Social Sciences   |