

Formulation and in-vitro release study of vitamin B₁₂ from implant poly-lactic glycolic acid.

By

Teba Thaer Al-Mahdawy

Supervisor

Dr. Samer Hasan Hussein-Al-Ali

Co-Supervisor

Dr. Jabar Faraj Al-Wakeel, Prof.

This Thesis was submitted in Partial Fulfillment of the Requirements for the Master's Degree of Science in Pharmaceutical science

> Faculty of Graduate Studies Isra University Amman -Jordan May, 2018

جامعة الاسراء

نموذج تفويض

أنا طيبة ثائر المهداوي ، أفوض جامعة الاسراء بتزويد نسخة من رسالتي /أطروحتي للمكتبات أو المؤسسات أو الهيئات أو الاشخاص عن طلبها حسب التعليمات النافذة في الجامعة.

التوقيع:

التاريخ:

Isra University

Authorization Form

I, Teba Thaar Al Mahdawy, authorizeisra University supply copies of my Thesis/ Dissertation to libraries or establishments or individuals on request, according toisra University regulations.

Signature:

Date:

COMMITTEEDECISION

This Thesis/Dissertation (Formulation and in-vitro release study of vitamin B12 from implant poly-lactic glycolic acid) was successfully Defended and Approved on ------

Examination Committee Signature

Dr.Samer Hasan HusseinAlAli, (Supervisor) ------

Dr.Jabar Faraj Alwakeel, (Co-Supervisor) ------

Dr. Jamal Al Karad (Internal examiner) ------

Dr .Nawfal Al Mashhdany (External examiner) ------

DEDICATION

Knowledge, work and words are the outcome of years of my life that I

wrapped with my wish and hope to satisfy my God.

I dedicate this effort to my first teacher and master, my prophet

Mohammed (May peace be upon him) and to the reason behind my

success my mother Dr. Buthainah Al-Mahdawy with a wish of

acceptance and an apology that I have nothing more to give.

AKNOWLEDGEMENT

Thanks to Allah, lord of creation who made this work possible.

Many thanks to all staff member in faculty of pharmacy at Baghdad University especially laboratory staff and Quality control department, Mustakbal University for their help and University of Kentucky for providing standard B12 for HPLC.

I would like to express my sincere gratitude deepest thanks and appreciation to my co-supervisor **Dr. JabarFaraj Al-wakeel**, for his help and tremendous scientific support for me. He was a professor, a teacher, and a father. I would like to dedicate my words, thanks and my appreciations to him.

I would like to express my sincere gratitude deepest thanks to my supervisor Associate **Dr. SamerHasan Hussein-Al-Ali**, for his scientific guidance, support .Wishing him continuous progress.

I am sincerely grateful to **Dr. Amjad Abu- Rmelah**, the Dean of college of Pharmacy, Isra University, for his support.

Deepest thanks to **Dr. SuhaMujahedAbudoleh**, my mentor from my bachelors till my master's degree, for here encouragements and help.

۷

I am deeply grateful to my sister and my friend **Dr. RaghdaZakaria Al-Dour,** thanks from the bottom of my heart for her support and help me morally and scientifically in my studying career. Wishing her continuous progress.

I would like to thank all my family and my close friends for the endless support.

Finally, I would like to express my thanks and appreciation to all people who helped me in achieving this research.

Subject pages	
Committee Decision VII	
Dedication VII	
AcknowledgementV	
List of Content	
List of TableXI	
List of FiguresXIII	
Lists of DiagramsXIV	
List of AbbreviationsXV	
AbstractXVII	
Chapter One: Introduction	
1. Introduction 1	
Chapter Two:Literature review	
2. Literature review 3	
2.1.Vitamin B12 definition, physical, and chemical properties 3	
A. Vitamin B12 definition	
B. physical properties 3	
C. chemical properties 4	
2.2. Source of vitamin b12 5	
2.3. Types of vitamin B ₁₂ and Its Conversions/	
(C63H88CON14O14B)6	
2.3.1. Cyanocobalamin 6	
2.3.2. Methylcobalamin (MeB12)7	
2.3.3. Hydroxocobalamin 8	

Subject	pages
2.3.4. Adenosyl-cobalamin (adoB12)	8
2.3.5. Pseudovitamin-B12	9
2.4.Uses of Vitamin B12	10
2.5. Pathophysiology of vitamin b12	10
2.6. Advantage and Disadvantage of vitamin B12	12
2.6.1. Advantage of vitamin B12	12
2.6.2. Disadvantage of vitaminB12	13
2.7. Vitamin B12 Deficiency and Treatment	14
2.7.1. Definition of Vitamin B12 deficiency	14
2.7.2. Treatment of Vitamin B12 Deficiency 14	
2.8. Definition and treatment of cyanide poisoning	16
2.8.1. Cyanide poisoning 10	6
2.8.2 Treatment of cyanide poisoning16	
2.9. Route of administration of vitamin b12	17
2.9.1. Oral system 1	7
2.9.2. Parenteral Routes 1	17
2.10. Controlled release dosage forms as drug delivery system 1	9
2.10.1. Controlled drug delivery system 19	
2.10.2. Advantages of controlled drug delivery system 2	0
2.10.3. Disadvantages of controlled drug delivery system 2	1
2.11. Polymer	1
2.12.Poly(L-lactide-co-glycolide) (PLGA) 2	4
2.12.1.Poly(L-lactide-co-glycolide) (PLGA) definition 24	4

Subject	ages
2.12.2.Uses of Poly(L-lactide-co-glycolide) (PLGA)26	
2.13. Controlled release using PLGA polymer as a drug /	
delivery system26	
A- Microsphere as Controlled drug delivery system 26	
B- Nanoparticles as Controlled drug delivery system 28	
C- Implants as Controlled drug delivery	
2.14.Implants 30	
2.14.1.Implants as Controlled drug delivery 30	
2.14.2. Advantage and Disadvantage of implant drug /	
delivery system32	
Chapter Three: Methodology	
3.1 Target Product, Materials and preparation of polymer	
PLGA implant and preparation of simulated body fluid	
3.1.1. Quality Target Product Profile	
3.1.2. Materials and Equipment 35	
A- Bill of Materials	
B- Equipment List	
C- Supplies 37	
3.1.3. Preparation of polymer PLGA implant	
3.1.4. Preparation of simulated body fluid	
3.2. Analytical Method for the cyanocoblamine in the implants	
and also in the release media	
3.3. Characterization of Implants 49	
3.3.1. Drug Content 49	

Subject	pages
3.3.2. Particle Size of the embryonic particles	
493.3.3.Molecular Weight Measurement 4	9
3.3.4.Moisture Content 50	
3.3.5.Residual solvents and silicon oil analysis in implant 50	
A- Analytical Procedure for residual solvents50	
B- Methods of analysis of silicon oil by HPLC 54	
Chapter Four: Result	
4. Results	
4.1. Implant formulation for cyanocobalamine (vitamin B₁₂)	
with PLGA polymer 50:50 56	
4.2. Characterization of Implants 56	
A. Drug content 56	
B. Particle size of embryonic particles	
C. Molecular Weight of the polymer before the in vitro	
release started	
D. Moisture Content 57	
E. Residual Solvents and silicon oil59	
4.3. HPLC analysis and standardization of /	
cyanocobalamine (vitamin B ₁₂)60	
4.4. In Vitro cumulative percent release of	
cyanocobalamine (B ₁₂ formulations)61	
Chapter Five: Discussion	
5. Discussion64	
Chapter Six: Conclusion	
6. Conclusion	
Chapter Seven: References	
7. References	
/. 1010101000000000000000000000000000000	

List of Tables

NUMBER	TABLE CAPTION	PAGE
Table 2-1	Shows the source of vitamin B12 from natural resources	5
Table 2-2	Types of Vitamin B ₁₂ Comparison	8
Table 2-3	Dosage forms of vitamin B12	18
Table 2-4	Examples of drugs as microsphere Controlled release drug delivery system	27
Table 2-5	Examples drugs as nanoparticles (use polymers)Controlled release drug delivery system	29
Table 2-6	Example drugs as implant Controlled release drug delivery system	31
Table 3-1	Quality Target Product Profile	34
Table3-2	Bill of Materials	35
Table 3-3	Equipment List	36
Table 3-4	Supplies	37
Table 3-5	General Process Description Formulation Screening (5 gram)	40
Table 3-6	Cyanocobalamine Implants process Description for 20 gm batch size for five different batches	42
Table 3-7	Describes the ionic composition of simulated body fluid (SBF) and human blood plasma	45

46
40
48
51
55
58
59
62

Lists of Figures

NUMBER	FIGURE CAPTION	PAGES
Figure 2-1	Classified of vitamin B12	4
Figure2- 2	Steps in transmuting each form of vitamin B12	6
Figure 2-3	The comparing between structurePseudovitamin-B12 and structureB12	9
Figure 2-4	Normal Mechanisms and Defects of imbibition of Vitamin B12	11
Figure 2-5	The effects of Vitamin B12 deficiency on the body	15
Figure 2-6	Samples of Marketed B12 Products	19
Figure 2-7	Classified of Polymer	22
Figure 2-8	Structure of Poly(L-lactide-co-glycolide) (PLGA)	25
Figure 3-1	The final shape of prepare polymer PLGA implant	44
Figure 4-1	Representative chromatogram of 500 µg/mL cyanocobalamine standard in 100mM acetate buffer	60
Figure 4-2	Cyanocoplamine Standard Curve	60
Figure 4-3	Rate between Cumulative release% and Time (days) Showing result in Table 4-3	63

Lists of Diagrams

NUMBER	DIAGRAMS CAPTION	PAGES
Diagram 3-1	Implants Process Flow (derived from US patent 7612176 and some improvement to be applied for making implant)	39

List of Abbreviations

adoB12	Adenosyl-cobalamin
API	Active pharmaceutical ingredient
CNS	central nervous system
CS	chitosan
DCM	dichloromethane
DDS	Controlled drug delivery systems
EC	ethyl cellulose
EtOH	ethanol
GC	Gas chromatography
GMO	glycerylmonooleate
GPC	Gel-permeation chromatography ()
HPLC	High-performance liquid chromatography
IF	Intrinsic factor
MeB12	Methylcobalamin
NA	denoted for not available.
NP	denoted for not performed

PCL	polycaprolactone
PEA	polyesteramide
PGA	Polyglycolic acid
PLA	polylactide
PLG	polyglycolide
PLGA	Poly Lactic-co-Glycolic Acid
PLL	Poly(L-lysine)
RBC	Red Blood Cell
SAM	S-Adenosylmethionin
SC	Subcutaneously
SiO	Silicone oil
TFA	Trifluoroacetic acid
Tg	Transition temperature

Formulation and in-vitro release study of vitamin B₁₂ from

implant poly-lactic glycolic acid.

By

Teba Thaer Al- Mahdawy

Supervisor Dr. Samer Hasan Hussein Al-Ali.

Co-Supervisor Dr. Jabar Faraj Al-Wakeel, Prof.

Abstract

Vitamin B12 (cyanocobalamin) is essential for normal RBC formulation, nerve, proteins in the body, certain enzyme reactions, and neurologic function. Vitamin B12 is given both as an oral supplement and intramuscular single dose with multiple and consecutive treatment in an injections. The present research study was carried out to formulate a supplement vitamin B_{12} in a controlled release dosage form as an implants biodegradable polymers, poly-lactic glycolic acid (PLGA) to increase bioavailability of drug in patients that have poor absorption of vitamin B_{12} from oral route due to the decrease of intrinsic factor that is responsible for the absorption. Five different formulation of polymer implant and prepared in a twenty gram batch , according the USA patent **7612176**.

The dried and finished product implant weight 1 g contain 5mg of vitamin B_{12} and characterized for drug content, molecular weight of the polymer, particle size of the embryonic particles, moisture contents and residual solvents (EtOH, DCM, Heptane, and SiO). In addition, the in vitro release study at blood simulated solution was also performed and samples analyzed throughout 38 day, the release started ad 21- 24 days continuing to 38 day and release reached to 74.5%.