

Evaluation and Improvement of Traffic Flow on Roundabout of Arterial Urban Street in Amman/ Jordan

By Mohammed F. Salah Civil Engineer

Supervisor

Prof. Dr. Basim Jrew

This Thesis was submitted as Partial Fulfillment of the Requirements for the Master Degree of Engineering Project Management (E.P.M.)

> Faculty of Engineering Isra University

> > May, 2018

Amman –Jordan

Isra University Authorization Form

I, Mohammed Fathi Salah, authorize Isra University to supply copies of this thesis to libraries or establishments or individuals on request according to Isra University regulations.

Signature:

Date:

Committee Decision

This Thesis (Evaluation and Improvement of Traffic Flow on Roundabout of Arterial Urban Street in Amman / Jordan) was Successfully Defended and Approved on 15- May- 201

Examination Committee

Signature

Prof. Dr. Basim Jrew (Supervisor) Prof. of Civil Engineering (Isra University) Amman- Jordan

Prof. Dr. Sultan A. Tarawneh (Member) Prof. of Construction Engineering Management (Mutah University of Jordan) Karak- Jordan

Prof. Dr. Saad Alabdullah (Memebr) Prof. of Civil Engineering (Isra University)

Amman-Jordan

1. 1.2

16.5.2

Dedication

To the spirit of my father

who was supporting and encouraging me to believe in myself

My Mother

Who taught me to trust in Allah

To My Brothers and Sisters

Who always beside me in whole my life

Acknowledgments

I would like to give my sincere thanks and appreciate to the supervisor Professor Dr. Basim K. Jrew for his great and continuous encouragement, catalytic guidance, unfailing support and patience. I wouldn't have done it without him.

I would like to give my thanks to all the teachers in the master degree program at the college of engineering in Isra University, who support us with the most variable information about the engineering project management.

My Great thanks and appreciation for all the professions in the specified departments at the Great Amman Municipalities and traffic department in public security directorate.

I also would like to express my gratitude to the committee members, Prof. Saad Alabdullah and Prof. Sultan A. Tarawneh for their time, effort, valuable comments and cooperation.

My sincere thanks and wishes of goodwill also go to my family who encouraged me and give me the support to fulfill this research.

Subject	Page
Authorization Form	Ι
Committee Decision	II
Dedication	III
Acknowledgement	IV
List of Contents	V
List of Tables	VII
List of Figures	IX
List of Appendices	XI
List of Abbreviations	XII
Abstract (English)	XIII
Chapter One: Introduction	1
1.1 Background	1
1.2 Area of Study	2
1.3 Problem Statement	3
1.4 Research Objectives	3
1.5 Research Methodology	4
1.6 Research Significance	5
1.7 Related Studies	5
1.8 Structure of the Study	7
Chapter Two: Literature Review	
2.1 Fundamental Principles	9
2.1.1 Concepts	9
2.1.2 Uninterrupted Flow	15
2.1.3 Interrupted Flow	17
2.1.3.1 Active Traffic Management Strategies	20
2.1.3.1.1 Traveler Information Systems	21
2.1.3.1.2 Managed Lanes	21
2.1.3.1.3 Traffic Signal Control	22
2.1.3.1.4 Speed Harmonization	22
2.2 Computer Software	23
2.2.1 Highway Capacity Software (HCS 2010)	23
2.2.2 SIDRA Software	
2.2.3 Synchro Software	30
2.3 Previous Studies	36
Chapter Three: Methodology & Analysis of Results	53
3.1 Area of Study	53
3.1.1 First Roundabout	54
3.1.2 Second Roundabout	56
3.1.3 Third Roundabout	58

List of Contents

Subject	Page
3.1.4 Fourth Roundabout	60
3.1.5 Fifth Roundabout	
3.1.6 Sixth Roundabout	
3.2 Research Methodology	
3.3 Traffic Data Collection	
3.3.1 Existing Traffic Conditions	69
3.3.2 Short-term Traffic Condition	71
3.3.3 Mid-term Traffic Condition	73
3.4 Methodology of Roundabouts Analysis	75
3.4.1 Roundabout Analysis Methodology Steps	77
3.4.2 Typical Manual Application on First Roundabout	79
3.4.2.1 Convert Movement Demand Volumes to Flow Rates	79
3.4.2.2 Adjust Flow Rates for Heavy Vehicles	80
3.4.2.3 Determine Circulating and Exiting Flow Rates	81
3.4.2.4 Determine Entry Flow Rates by Lane	82
3.4.2.5 Determine the Capacity of Each Entry Lane	83
3.4.2.6 Compute the Volume-to-Capacity Ratio for Each Lane	83
3.4.2.7 Compute the Delay and LOS	83
3.5 Analysis of Data Using HCS2010 Software	84
3.5.1 First Roundabout Analysis	84
3.5.2 Second Roundabout Analysis	
3.5.3 Third Roundabout Analysis	
3.5.4 Fourth Roundabout Analysis	
3.5.5 Fifth Roundabout Analysis	
3.5.6 Sixth Roundabout Analysis	
3.5.9 Analysis Summery and Suggested Improvements	
Chapter Four: Analysis of Suggested Improvements	
4.1 First Roundabout Improvements	97
4.2 Second Roundabout Improvements	104
4.3 Third Roundabout Improvements	108
4.4 Fourth Roundabout Improvement	110
4.5 Fifth Roundabout Improvement	113
4.6 Sixth Roundabout Improvements	116
4.7 Public Transportation Improvement	
4.8 Management Improvement Summary	
Chapter Five: Conclusion and Recommendations	
5.1 Conclusions	
5.2 Recommendations	
5.3 Future Research	
References	
Appendices	135

List of contents – continued

Number	Table Caption	Page
2.1	Roundabout Model Parameters	19
2.2	Level of Service Categories	19
3.1	Geometric Data for the First Roundabout	56
3.2	Geometric Data for the Second Roundabout	58
3.3	Geometric Data for the Third Roundabout	60
3.4	Geometric Data for the Fourth Roundabout	62
3.5	Geometric Data for the Fifth Roundabout	64
3.6	Geometric Data for the Sixth Roundabout	66
3.7	PHF and HV% Data for Each Roundabout	68
3.8	Traffic Volumes and Directions at the First Roundabout	70
3.9	Traffic Volumes and Directions at the Second Roundabout	70
3.10	Traffic Volumes and Directions at the Third Roundabout	70
3.11	Traffic Volumes and Directions at the Fourth Roundabout	70
3.12	Traffic Volumes and Directions at the Fifth Roundabout	70
3.13	Traffic Volumes and Directions at the Sixth Roundabout	71
3.14	Traffic Volumes and Directions at the First Roundabout	72
3.15	Traffic Volumes and Directions at the First Roundabout	72
3.16	Traffic Volumes and Directions at the Third Roundabout	72
3.17	Traffic Volumes and Directions at the Fourth Roundabout	72
3.18	Traffic Volumes and Directions at the Fifth Roundabout	72
3.19	Traffic Volumes and Directions at the Sixth Roundabout	73
3.20	Traffic Volumes and Directions at the First Roundabout	73
3.21	Traffic Volumes and Directions at the Second Roundabout	73
3.22	Traffic Volumes and Directions at the Third Roundabout	74
3.23	Traffic Volumes and Directions at the Fourth Roundabout	74
3.24	Traffic Volumes and Directions at the Fifth Roundabout	74
3.25	Traffic Volumes and Directions at the Sixth Roundabout	74
3.26	Flow Rates at the First Roundabout	80
3.27	Adjusted Flow Rates at the First Roundabout	81

List of Tables

	List of Tubles - Continued	
3.28	Circulating and Exiting Flows at the First Roundabout	82
3.29	Entry Flows at the First Roundabout	82
3.30	Capacity of Each Lane at the First Roundabout	83
3.31	V/C, Delay and LOS for the First Roundabout	84
3.32	Output Results for First Roundabout with Existing Conditions (2017)	85
3.33	Output Results for First Roundabout with Short-term Conditions (2022)	86
3.34	Output Results for First Roundabout with Mid-term Conditions (2027)	86
3.35	Output Results for Second Roundabout with Existing Conditions (2017)	87
3.36	Output Results for Second Roundabout with Short-term Conditions (2022)	88
3.37	Output Results for Second Roundabout with Mid-term Conditions (2027)	88
3.38	Output Results for Third Roundabout with Existing Conditions (2017)	89
3.39	Output Results for Third Roundabout with Short-term Conditions (2022)	90
3.40	Output Results for Third Roundabout with Mid-term Conditions (2027)	90
3.41	Output Results for Fourth Roundabout with Existing Conditions (2017)	91
3.42	Output Results for Fourth Roundabout with Short-term Conditions (2022)	91
3.43	Output Results for Fourth Roundabout with Mid-term Conditions (2027)	92
3.44	Output Results for Fifth Roundabout with Existing Conditions (2017)	93
3.45	Output Results for Fifth Roundabout with Short-term Conditions (2022)	93
3.46	Output Results for Fifth Roundabout with Mid-term Conditions (2027)	93
3.47	Output Results for Sixth Roundabout with Existing Conditions (2017)	94
3.48	Output Results for Sixth Roundabout with Short-term Conditions (2022)	94
3.49	Output Results for Sixth Roundabout with Mid-term Conditions (2027)	95
3.50	LOS and Delay Summery for All Roundabouts and Traffic Conditions	95
4.1	LOS and Delay Before and After the Improvements for First Roundabout	103
4.2	Fuel Consumption and Co ₂ Before and After the Improvements for First Roundabout	103
4.3	LOS and Delay Before and After the Improvements for Second Roundabout	108
4.4	Fuel Consumption and Co ₂ Before and After the Improvements for Second Roundabout	108
4.5	LOS and Delay Before and After the Improvements for Third Roundabout	110
4.6	Fuel Consumption and Co ₂ Before and After the Improvements for Third Roundabout	110
4.7	LOS and Delay Before and After the Improvements for Fourth Roundabout	113
4.8	Fuel Consumption and Co ₂ Before and After the Improvements for Fourth Roundabout	113
4.9	LOS and Delay Before and After the Improvements for Fifth Roundabout	116
4.10	Fuel Consumption and Co ₂ and After the Improvements for Fifth Roundabout	116
4.11	LOS and Delay Before and After the Improvements for Sixth Roundabout	120
4.12	Fuel Consumption and Co ₂ Before and After the Improvements for Sixth Roundabout	120
4.13	Management Improvements for Control Delay in the Selected Roundabouts	122
4.14	Management Improvements for Fuel Consumption in the Selected Roundabouts	123
4.15	Management Improvements for Co ₂ in the Selected Roundabouts	124

List of Tables - continued

Number	Figure Caption	Page
2.1	Elements of Roadway	10
2.2	Other Elements of Roadway	10
2.3	Flow, Density and Speed Relations	17
2.4	HCS 2010 Interface	24
2.5	HCS 2010 General Information Entry Window	25
2.6	HCS 2010 Volume and Lane Configuration Window	26
2.7	HCS 2010 Intersection Phase Window	26
2.8	SIDRA software Interface	27
2.9	SIDRA Intersection Dialogue	28
2.10	SIDRA Roundabout Dialogue	29
2.11	SIDRA Geometry Dialogue	30
2.12	Synchro 8 Interface	31
2.13	Synchro 8 Buttons	32
2.14	Synchro 8 Lane Settings	33
2.15	Synchro 8 Volume Settings	34
2.16	Synchro 8 Timing Settings	35
2.17	Proposed Model vs. Measured Average Roundabout Circulating Speeds	38
2.18	Layout of a Typical Turbo Roundabout with Different Access Road Configurations.	41
2.19	Unbalanced Flow at Roundabout	43
2.20	Roundabout Capacity Analysis	44
2.21	Second Stop Signal Control	46
2.22	Use of Metering Signals at Roundabouts	47
3.1	Zahran Street Layout	54
3.2	First Roundabout Layout	55
3.3	First Roundabout Satellite View	55
3.4	Second Roundabout Layout	57
3.5	Second Roundabout Satellite View	57
3.6	Third Roundabout Layout	59
3.7	Third Roundabout Satellite View	59
3.8	Fourth Roundabout Layout	61
3.9	Fourth Roundabout Satellite View	61
3.10	Fifth Roundabout Layout	63
3.11	Fifth Roundabout Satellite View	63
3.12	Sixth Roundabout Layout	65
3.13	Sixth Roundabout Satellite View	65
3.14	LOS criteria for roundabouts	75

List of Figures

	5 0	
3.15	Flow Types in Roundabouts	76
3.16	Methodology Steps Used in Roundabout Analysis	78
3.17	First Roundabout Geometry Input	85
3.18	Second Roundabout Geometry Input	87
3.19	Third Roundabout Geometry Input	89
4.1	Intersection Information Data Entering in SIDRA 7	98
4.2	Lane Geometry Information Data Entering in SIDRA 7	99
4.3	Volumes Information Data Entering in SIDRA 7	99
4.4	LOS of First Roundabout after Improvement for Existing Conditions (2017)	100
4.5	LOS of First Roundabout after Improvement for Short-term Conditions (2022)	101
4.6	LOS of First Roundabout after Improvement for Mid-term Conditions (2027)	102
4.7	LOS of Second Roundabout after Improvement for Existing Conditions (2017)	105
4.8	LOS of Second Roundabout after Improvement for Short-term Conditions (2022)	106
4.9	LOS of Second Roundabout after Improvement for Mid-term Conditions (2027)	107
4.10	LOS of Third Roundabout after Improvement for Mid-term Conditions (2027)	109
4.11	LOS of Fourth Roundabout after Improvement for Short-term Conditions (2022)	111
4.12	LOS of Fourth Roundabout after Improvement for Mid-term Conditions (2027)	112
4.13	LOS of Fifth Roundabout after Improvement for Short-term Conditions (2022)	114
4.14	LOS of Fifth Roundabout after Improvement for Mid-term Conditions (2027)	115
4.15	LOS of Sixth Roundabout after Improvement for Existing Conditions (2017)	117
4.16	LOS of Sixth Roundabout after Improvement for Short-term Conditions (2022)	118
4.17	LOS of Sixth Roundabout after Improvement for Mid-term Conditions (2027)	119

List of Figures - continued

List of Appendices

Number	Figure Name	Page
А	HCS2010 Results	А
В	SIDRA 7 Results	В
С	Metering Signal Settings	С

Abbreviation	Meaning
EPM	Engineering Project Management
LOS	Level of Service
TSM	Transportation System Management
TDM	Transportation Demand Management
TMS	Traffic Management System
TNMS	Traffic Network Management System
QoS	Quality of Service
AS	Autonomous System
DTA	Dynamic Traffic Assignment
DRIP	Dynamic Route Information Panel
ITE	The Institute of Transportation Engineers
PHF	Peak Hour Factor
PHV	Peak Hour Volume
НСМ	Highway Capacity Manual
HCS	Highway Capacity Software
AADT	Annual Average Daily Traffic
ITS	Intelligent Transportation System
PCE	Passenger Car Equivalent
TRB	Transportation Research Board
HOV	High Occupancy Vehicle
НОТ	High Occupancy Tall

List of Abbreviations

Evaluation and Improvement of Traffic Flow in Roundabout Intersection of Arterial Urban Street in Amman / Jordan

By: Mohammed F. Salah

Supervisor: Prof. Dr. Basim K. Jrew

Abstract

The study aims to analyze, evaluate and improve of the traffic flow conditions on six roundabouts located on arterial Zahran Street in Amman area.

The traffic flow and geometric conditions were analyzed at six selected roundabouts for the three periods of times, existing condition (year 2017), short-term condition (year 2022) and mid-term condition (year 2027).

Highway Capacity Manual (HCM2010) and Highway Capacity Software (HCS2010) were used to analyze and evaluate the data collection for the three periods of times.

The results of analysis shows that the output results of (HCS-2010) indicates LOS-F for all selected roundabouts on all period of times, which represents high congestions with breakdown traffic flow condition.

SIDRA-7 software was used to improve the traffic and geometric conditions on each selected roundabouts. The output results of SIDRA-7 software shows a significant improvement in terms of level of service (LOS), total delays, fuel consumption and Co_2 .

The study recommend to implement the improvement geometric conditions, installation of metering traffic signals, or constructing grade separation (overpass or underpass) for short-term and mid-term periods.

Finally, the study proposed a future research that would be comprehensive for the impact of pedestrians on traffic congestion and traffic safety on these roundabouts.

Keywords: Traffic Congestion, Roundabout Improvements, Sidra-7 Software, HCS-2010 Software, Highway Capacity Manual (HCM-2010), Active Traffic Management (ATM).