

Economic Evaluation of Solar Energy Usage (A Case Study in Iraq)

A Thesis

Submitted to the College of Engineering/ Isra University as a Partial Fulfilment of the Requirements for the Degree of Master's in Engineering Project Management (E.P.M.)

> **By** Hussein Abdul Kareem Ghanim Al-Adhami

> > **Supervised by** Dr. Mohammad Zakariya Siam

> > > **Co-supervisor** Dr. Nidal M. Hussein

> > > > May 2018

DEDICATION

This work is dedicated to my parents Eng. Abdul-Kareem G. Al-Adhami and Sanaa H. Ahmed. All I have and will accomplish in my life would be impossible without their love and sacrifices.

Also, this work is dedicated to my brother Eng. Omar A. Al-Adhami and my sister Haneen A. Al-Adhami, who have been a great source of motivation and inspiration.

Finally, this work is dedicated to my beloved wife Sura M. Al-Mohamy, for continuously supporting and encouraging me to complete this thesis, as well as to my lovely daughter Mena H. Al-Adhami.

Acknowledgment

First of all, I would like to thank God the Almighty for giving me the strength and ability to learn and understand and helping me to complete this thesis.

I would also like to express my sincere gratitude to my supervisor Dr. Mohammad Zakariya Siam for his patience, motivation and guidance.

Special thanks are extended to Dr. Nidal M. Hussein for his continuous support, supervision, advice and help all these months, without which it would never have been possible to bring this thesis into reality.

My sincere thanks also go to Dr. Rami A. Maher, Dr. Ibrahim Al-Hdithi and Dr. Faiq Al-Zwainy, who provided me with an opportunity to learn adequate science, which has been essential for the completion of this thesis.

Special thanks are also due to my friends Ali Al-Dulami, Ahmed Hadi, Mohamed Hani, Mahmood Badawi, Ali Muntajab, Mohammed Sabah and Waleed Khlid for their valuable support and encouragement.

Words are unable to express my gratitude and acknowledgment to every one of them.

Isra University

Authorization Form

I, Hussein Abdul Kareem Ghanim Al-Adhami, authorize the Isra University to supply copies of my thesis to libraries, establishment or individuals on request, according to the Isra University regulations.

Signature

Date

Committee Decision

This thesis entitled "Economic Evaluation of Solar Energy Usage (A Case Study in Iraq)" was successfully defended and approved on

Examination Committee	Signature
Dr. Mohammad Zakariya Siam (Supervisor) (Isra University)	
Dr. Nidal M. Hussein (Co-supervisor) (Petra University)	
Dr. Rami A. Maher (Member) (Isra University)	
Dr. Yousef Al-Abdallat (Member) (The University of Jordan)	

Economic Evaluation of Solar Energy Usage (A Case Study in Iraq)

By: Hussein Abdul Kareem Ghanim Al-Adhami

Supervisor: Dr. Mohammad Zakariya Siam Co-supervisor: Dr. Nidal M. Hussein

Abstract

This thesis investigates the potential of solar energy usage in Iraq for electricity generation and explains the environmental risks of using fossil fuels. The study focuses on using solar panels to compensate for the actual deficit in the electricity sector in Iraq. The government building, which located in west of Baghdad, Iraq will be taken as a case study. The choice of this building was due to the availability of accurate information about the electricity of the building and as it provides suitable space for installing solar panels. In this thesis, it was proposed to establish a solar system that is not linked to the government electricity grid (off-grid), as an alternative option for the current system (generators and government electricity), which consumes annually large amounts of money and diesel.

This study shows that the proposed solar system is a good solution, both economically and environmentally. Economically, through financial analysis, the proposed system will save \$ 1,053,150 in 40 years, and the net present value for the current system is higher than the net present value of the proposed system (PV system) by \$ 289,828. Furthermore, the simulation program shows that the proposed solar system can meet the needs of the building of electricity, but the building needs to be operated eight hours daily on the government electricity grid. Environmentally, the proposed system will prevent 15,603.2 tons of CO₂ over its life time period of 40 years.

Keywords: Solar Energy, Renewable Energy, PV System, Energy Management, Simulation, Economic Evaluation, Solar Panel.

Table of Content

Titles	Pages
ABSTRACT	V
CHAPTER ONE	
Introduction	
1.1 Motivation	1
1.2 Research Aim and Objective	2
1.3 Research Problem	3
1.4 Research Importance	3
1.5 Research Hypotheses	4
1.6 Thesis Structure	4
1.7 Research Methodology	5
CHAPTER TWO	
Literature Review	
2.1 Introduction	6
2.2 Application of Renewable Energy in Construction Industry	7
2.3 Application of Solar Energy in Construction Industry	11
2.4 Characteristics of Previous Studies	18
2.5 Summary	19
CHAPTER THREE	
Research Methodology	
3.1 Introduction	20
3.2 Research Strategy	20
3.3 Finding and Discussion	32
3.4 Simulation	33
3.5 Energy Management	33
CHAPTER FOUR	
Energy and Renewable Energy	
4.1 Introduction	34
4.2 Energy and Renewable Energy Worldwide	34

4.3 Energy Condition in Iraq	37
4.4 Types of Energy	43
4.5 Energy Forms	43
4.6 Types of Renewable Energy Sources	44
4.7 Solar Cells Concepts	47
CHAPTER FIVE	
Data Collection, Analysis and Energy Management	
5.1 Introduction	57
5.2 Important Solar Data about Iraq	57
5.3 Building Description	60
5.4 Building Electricity	61
5.5 Total Payment for Current System	64
5.6 Proposed System	66
5.7 Accumulative Costs for Current System and Proposed System	71
5.8 Net Present Value	76
5.9 Greenhouse Gases Annual Reduction	82
5.10 Simulation for Proposed System	82
5.11 Research Hypotheses	90
5.12 Energy Management	90
CHAPTER SIX	
Conclusions and Recommendations	
6.1 Conclusions	101
6.2 Recommendations	102
6.3 Recommendations for Future Work	103
REFERENCES	104
APPENDIXES	
Appendix A (Personal Interview with the Supervisor Engineer of the Building)	A1 A2
Appendix B (Purchasing Bill of the Two Generators and Generator	B1 B2
Information) Appendix C (Cost of Building a Concrete Base, Making a Shed and	B2
Purchasing the Necessary Equipment to Connect the Generator to the Building)	C1 C2 C3

Appendix D (Price Offers Provided by ASWAR & ETA Max Company)	D1
	D2
	D3
	D4
	D5
	D6
	D7
Appendix E (Simulation Results)	E1
	E2
	E3
	E4
	E5

List of Figures

No.	Figure	Page
Figure 1.1	Thesis Structure	4
Figure 1.2	Research Methodology	5
Figure 3.1	Types of Samples	23
Figure 3.2	Methods of Implementation of Construction Projects	26
Figure 3.3	Types of Engineering Contract	28
Figure 4.1	GHG Emissions by Sector in Iraq	42
Figure 4.2	Types of Energy	43
Figure 4.3	Energy Forms	43
Figure 4.4	PV Panel Types	48
Figure 4.5	PV System Components	49
Figure 4.6	Solar Cell Work	50
Figure 4.7	Off-Grid PV System	51
Figure 4.8	On-Grid PV System	52
Figure 4.9	Hybrid System	53
Figure 5.1	Maximum Solar Radiation Hour in Iraq	59
Figure 5.2	Government Building Location	61
Figure 5.3	Accumulative Current System Costs	66
Figure 5.4	Location for the Proposed System	68
Figure 5.5	Accumulative Proposed System Costs	71
Figure 5.6	Accumulative Current System and Proposed System Costs	76
Figure 5.7	NPV for Current System	77
Figure 5.8	NPV for Proposed System	79
Figure 5.9	Solar Radiation in Baghdad	83

Figure 5.10	Sunshine Duration in Baghdad	83
Figure 5.11	Precipitation in Baghdad	84
Figure 5.12	Temperature in Baghdad	84
Figure 5.13	Off-Grid Connected PV System	85
Figure 5.14	Main System Parameters	86
Figure 5.15	Main Simulation Results for PV System	86
Figure 5.16	System's Productivity Over a Year	87
Figure 5.17	System Productivity in Ideal Conditions and Real Condition	88
Figure 5.18	Main Findings of the Proposed System	88
Figure 5.19	Loss Diagram Over the Whole Year	89
Figure 5.20	Carbon Dioxide Prevented	90
Figure 5.21	Trends of Practitioners in Energy Management	94
Figure 5.22	Energy Management Systems	95
Figure 5.23	Energy Project Management Process	96
Figure 5.24	Energy Project Management Cycle	97
Figure 5.25	Energy Project Manager Responsibility	99

List of Tables

No.	Titles	Pages
Table 2.1	Comparison Between the Present Study and Previous Studies	18
Table 3.1	Relevant Situation for Different Research Strategies	21
Table 4.1	Estimated Renewable Energy	36
Table 4.2	Gases Emitted from the Combustion of One Liter of Diesel in Iraq	41
Table 4.3	Annual Amounts of Gases Generated from Burning Diesel in Baghdad	42
Table 5.1	Average Length of Daylight Hours in Different Governorates	59
Table 5.2	Best Tilt Angles in Baghdad	60
Table 5.3	Summary of Building Electricity	63
Table 5.4	Total Payment for Current System	64
Table 5.5	Proposed System Details	67
Table 5.6	Total Payment for Proposed System	69
Table 5.7	Accumulative Current System and Proposed System Cost	72
Table 5.8	NPV for Current System	78
Table 5.9	NPV for Proposed System	80
Table 5.10	Greenhouse Gases Annual Reduction	82

List of Abbreviation

Ac	Alternating Current
A	Ampere
ASEAN	Association of Southeast Asian Nations
CSP	Concentrating Solar Power
CO ₂	Carbon Dioxide
DC	Direct Current
EU	European Union
GW	Gigawatt
GWh	Gigawatt-hour
GHGs	Greenhouse Gases
kWh	Kilowatt-hour
KWp	Kilowatt-peak
Mtoe	Million Tons of Oil Equivalents
Mbpd	Million Barrels Per Day
MtCO ₂ e	Million Tons of Carbon Dioxide Equivalent
MW	Megawatt
MWh	Megawatt-hour
MWp	Megawatt-peak
PV	Photovoltaic Panel
ċ	Celsius Degree
g	Grams
kg	Kilograms
μg	Micrograms