

Management of Protecting the Side Slopes Adjacent to Archaeological Structures at Amman Downtown

Prepared by Mohammed Sabah Slebee

Supervised by

Dr. Orabi Al-Rawi

This Thesis was Submitted in Partial Fulfillment of the Requirements for Master Degree of Engineering Project Management

Faculty of Engineering

Isra University

May 2018

ACKNOWLEDGMENTS

Praise should first be to the Almighty Allah for His most passionate blessings that have assisted me in completing my thesis.

I would like to express my sincere gratitude and appreciations to my Supervisor Dr. Orabi Al-Rawi who has encouraged me to choose this subject and supplied me with valuable and insightful comments. His constructive remarks have been the cornerstone upon which the main ideas of the thesis have been built.

I also owe my debt and gratitude to Dr Ibrahim Al-Hadithi and Dr Rami Al-Samara'i for their continuous help, advice and encouragement during the period of my study.

Furthermore, no word can express my deep gratitude to my parents whose encouragement, support, cooperation, and generosity have made me arrive at this stage.

Special thanks are also extended to my instructors and professors who have taught me during the past two years and provided me with useful pieces of advice and references.

Finally, I wish to record my gratitude to the staff of the libraries at Isra University, in addition to Al-Nahrain University, University of Baghdad and University of Technology (Iraq) for their services and facilities they put at my disposal.

Isra University

Authorization Form

I, Mohammed Sabah Slebee, authorize Isra University to supply copies of my thesis to libraries, establishments or individuals on request, according to Isra University regulations.

Signature:

Date:

Committee Decision

This thesis (Management of Protecting the Side Slopes Adjacent to Archaeological Structures at Amman Downtown) was successfully defended and approved on May 2018.

Examination Committee

Signature

Dr. AIC

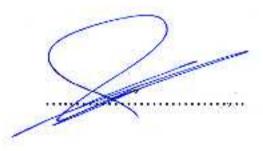
Dr. Orabi Al-Rawi (Supervisor)

Dr. of Civil Engineering

Isra University

Dr. Mohammed A. Hiyassat (Member)

Prof. of Civil Engineering


The University of Jordan

Dr. Salim T. Yousif (Member) Prof. of Civil Engineering

Isra University

i, det

DEDICATION

I dedicate my humble efforts in this thesis:

To my Parents, as they are the source of my inspirations....

To my sisters, for their continuous support....

To my friends for their encouragement....

Management of Protecting the Side Slopes Adjacent to Archaeological Structures at Amman Downtown

Abstract

Running any project successfully requires integration between the processes for each of the engineering design, the engineering project management, and methods of execution for the proposed project.

Al-Qal'ah region, located at Amman downtown, is a national historical site that has been exposed to continuous erosion of side slopes and ground instability. This can be attributed to a number of factors, prominent among which are environmental and climatic conditions, in addition to the existence of different slope characteristics at this region which govern the behavior of these slopes and consequently have considerable effects on the overall stability of this site.

The major aim of this research is to conduct detailed geotechnical and management investigations for the side slopes adjacent to the archaeological site of Al-Qal'ah region, and accordingly to suggest the most appropriate solutions that can be adopted to protect and develop the study area.

The geotechnical part investigated the engineering evaluations for the study area, in addition to proposing and designing a number of engineering alternatives to be performed in developing the overall study area and achieving the required slope stability of this region. Thus, three alternatives are proposed as the most suitable and applicable for protecting and developing the faces of the existing side slopes of the study area, namely gabion retaining wall, reinforced concrete retaining wall, and gravity retaining wall.

In the management part of this investigation, the phases of construction project management were identified. Then the most appropriate and optimal alternative was chosen after conducting the development of the project plan required for each alternative. The cost and duration needed for carrying out each alternative were determined using Primavera Software and calculating the NPV for all alternatives.

The findings of this research revealed that gabion retaining wall proves to be the best alternative in terms of cost, duration, NPV and safety for developing and protecting the first zone of the area under study compared with the other suggested alternatives. As for the second zone, the side slopes can be developed and protected using riprap. In addition, a new sidewalk was proposed to be carried out for the study area. In general, the above suggestions revealed to be helpful in improving the study area, and strengthening the overall stability of the site.

TABLE OF CONTENTS

Subject	Page
CHAPTER ONE	
INTRODUCTION	
1.1 General	2
1.2 Research Significance	3
1.3 Research Objectives	4
1.4 Research Methodology	4
1.5 Thesis Organization	6
CHAPTER TWO	
2.1 Preface	9
2.1 If folded 2.2 Review to the Related Aspects in Geotechnical Engineering	9
2.2 Review to the Related Aspects in Geotechnical Engineering 2.2.1 Slope Stability	9
1	10
2.2.2.1 Weathering	11
2.2.2.2 Earthquakes Shaking	12
2.2.2.3 Excavation at the Bottom of the Slope	12
2.2.2.4 Erosion	13
2.2.3 Slope Stability Analysis	13
2.2.4 Methods of Slope Stability Analysis	15
2.2.4.1 Limit Equilibrium Analysis Methods	15
2.2.5 Retaining Walls	16
2.2.5.1 Gabion Retaining Walls	17
2.2.5.2 Reinforced Concrete Retaining Walls	18
2.2.5.3 Gravity Retaining Walls	18
2.2.6 Forces Affecting Retaining Walls	18
2.2.7 Riprap	20
2.1 Construction Project Management	20
2.3.1 General	20
2.3.2 Construction Project Management Phases	22
2.3.3 Phases of Traditional Project Management	22

	Subject	Page
2.3.4	Planning	24
2.3.5	Planning Steps	25
2.3.5.	1Work Breakdown Structure	25
2.3.5.	2 Scheduling	26
2.3.5.	3 Planning Using Primavera Software	27
2.3.6	Comparison between Alternatives and Decision Making	28
2.4	Previous Studies Related to This Research	29
L	CHAPTER THREE DATA COLLECTION AND PROPOSED ALTERNATI	VES
3.1	Introduction	34
3.2	Al-Qal'ah Region	34
3.3	General Description of the Study Area	35
3.4	Seismicity and Earthquakes	36
3.5	Data Collection for the Study Area	37
3.6	Geological Descriptions	38
3.7	General Stability Assessment for the Study Area	39
3.8	Proposed Engineering Alternatives	40
3.8.1	Gabion Retaining Wall (the 1 st Alternative)	40
3.8.2	Reinforced Concrete Retaining Wall (the 2 nd Alternative)	41
3.8.3	Gravity Retaining Wall (the 3 rd Alternative)	41
3.9	Properties of Soil at the Study Area	42
	CHAPTER FOUR DESIGN OF PROPOSED ALTERNATIVES	
4.1	Introduction	44
4.2	Stability of a Retaining Wall	44
4.2.1	Stability against Overturning	44
4.2.2	Stability against Sliding	48
4.2.3	Stability against Bearing Capacity	49
4.3	Design of Gabion Retaining Wall	50
4.4	Design of Reinforced Concrete Retaining Wall	56
4.5	Design of Gravity Retaining Wall	57
4.6	A Summary of the Design of the Proposed Alternatives	60

	Subject	Page
	CHAPTER FIVE	
	PROJECT MANAGEMENT PLAN FOR THE DESIGN	ED
5.1	General	65
5.2	The Project Plan for Gabion Retaining Wall	65
5.3	The Project Plan for Reinforced Concrete Retaining Wall	72
5.4	The Project Plan for Gravity Retaining Wall	78
5.5	The Project Plan for the Second Zone Using Riprap	84
5.6	The Project Plan of Conducting a Sidewalk for the Two Zones	87
5.7	Net Present Value	90
5.7.1	Net Present Value for Gabion Retaining Wall	90
5.7.2	Net Present Value for the Reinforced Concrete Retaining Wall	91
5.7.3	Net Present Value for the Gravity Retaining Wall	91
	CHAPTER SIX	1
	CONCLUSIONS AND RECOMMENDATIONS	
6.1	Conclusions	94
6.2	Recommendations	95
REFE	REFERENCES 9	
APPE	APPENDICES 102	

LIST OF TABLES

Table	Table Name	D
Number	Table Name	Page
Table (3-1)	Locations (Lengths) of the Study Zones	39
Table (3-2)	Soil Parameters for Designing Retaining Walls	42
Table (4-1)	Calculations for Resisting Moments	46
Table (4-2)	Required Data for the Design of the Proposed Gabion Wall	52
Table (4-3)	Calculations for the Weight of Boxes	53
Table (4-4)	Required Data for the Design of the Proposed Gravity Retaining Wall	57
Table (4-5)	Values of K_a for $\delta' = \frac{2}{3}\phi_1$	58
Table (4-6)	Determining of the Resisting Moment	59
Table (4-7)	Calculations of the Safety Factors for All Designed Alternatives	61
Table (5-1)	Quantity Calculations for the Activities of Gabion Retaining Wall	67
Table (5-2)	Duration for the Activities of Gabion Retaining Wall	68
Table (5-3)	Total Cost for the Activities of Gabion Retaining Wall	70
Table (5-4)	Quantity Calculations for the Activities of Reinforced Concrete Retaining Wall	73
Table (5-5)	Durations for the Activities of Reinforced Concrete Retaining Wall	74
Table (5-6)	Total Cost for Activities of Reinforced Concrete Retaining Wall	76
Table (5-7)	Quantity Calculations for the Activities of the Gravity Wall	79
Table (5-8)	Durations for the Activates of Gravity Retaining Wall	80
Table (5-9)	Total Cost of Gravity Retaining Wall Activities	82
Table (5-10)	Quantity Calculations for Activities Related to Riprap Works	84
Table (5-11)	Durations for Activities related to Riprap Works	85
Table (5-12)	Total Cost of Performing Riprap Activities	86
Table (5-13)	Quantity Calculations of the Sidewalk Activities	88
Table (5-14)	Durations of Conducting the Sidewalk Activities	88
Table (5-15)	Total Cost of Sidewalk Activities	89

LIST OF FIGURES

Figure Number	Figure Name	Page
Figure (1-1)	A Project Management Plan for the Selected Alternative	6
Figure (2-1)	Different Types of Natural and Artificial Slopes	10
Figure (2-2)	Approximate Dimensions for Different Components of a Retaining Wall	19
Figure (2-3)	Steps to a Successful Project Management	21
Figure (3-1)	General Site Plan for Amman Citadel Including the Locations of the Drilled Boreholes	38
Figure (4-1)	Forces Acting on a Cantilevered Retaining Wall	45
Figure (4-2)	Forces Acting on Gravity Retaining Wall	46
Figure (4-3)	Passive Earth Pressure Including the Horizontal Driving Forces	48
Figure (4-4)	Types of Gabion Retaining Wall	51
Figure (4-5)	Cross Section for Gabion Retaining Wall	61
Figure (4-6)	Cross Section for Reinforced Concrete Retaining Wall	62
Figure (4-7)	Cross Section for Gravity Retaining Wall	63
Figure(5-1)	Work Breakdown Structure for Gabion Retaining Wall	66
Figure(5-2)	Sequence and Durations for the Activities of Gabion Retaining Wall	69
Figure(5-3)	Monthly Cost of Gabion Retaining Wall	71
Figure (5-4)	Work Breakdown Structure for Reinforced Concrete Retaining Wall	72
Figure (5-5)	Sequence of Durations for the Activities of Reinforced Concrete Retaining Wall	75
Figure (5-6)	Monthly Cost of Reinforced Concrete Retaining Wall	77
Figure (5-7)	Work Breakdown Structure for Gravity Retaining Wall	78
Figure (5-8)	Sequence and Durations for the Activities Related to Gravity Retaining Wall	81
Figure (5-9)	The Monthly Cost of Conducting the Gravity Retaining Wall	83

Figure Number	Figure Name	Page
Figure (5-10)	Work Breakdown Structure for Riprap	84
Figure (5-11)	Sequence and Durations for Riprap Activities	85
Figure (5-12)	The Monthly Cost of Carrying out Riprap Works	86
Figure (5-13)	Developing and protecting the Second Zone	87
Figure (5-14)	Work Breakdown Structure for the Proposed Sidewalk	87
Figure (5-15)	Sequence and Durations of Sidewalk Activities	89
Figure (5-16)	The Monthly Cost of the Sidewalk	89
Figure (5-17)	NPV for Gabion Retaining Wall	90
Figure (5-18)	NPV for Reinforced Concrete Retaining Wall	91
Figure (5-19)	NPV for Gravity Retaining Wall	92

LIST OF PLATES

Plate Number	Plate Name	Page
Plate (1-1)	A Photo of the Existing Archaeological Side Slopes at	3
	Al-Qal'ah Region	
Plate (3-1)	General Site Plan for Amman Citadel	36

LIST OF ABBREVIATIONS AND SYMBOLS

А	Annual Expenses
ACES	Arab Center for Engineering Studies
A _i	Area of Wall Cross Section
В	Width of Base Slab
C _c	Cohesion of Cyclopean Concrete
C_f	Cohesion of Foundation Soil
EAS	Engineering Axis for Studies
e	The eccentricity of the Resultant Force
F	Future Value
FOS	Factor of Safety
GIS	Geographical Information System
Н	Vertical Height of Cut
i	Interest rate
k _a	Coulomb's Active Earth Pressure Coefficient with Seismic Effect
KN	Kilo Newton
Mo	The Overturning Moment
MPa	Mega Pascal=KN/m ²
n	Years
Р	Initial Value
P _a	Active Earth Pressure
PEP	Project Execution Plan
P _h	Horizontal Component
PMP	Project Management Plan
P _P	The Passive Earth Pressure
P _v	Vertical Component
q _{max}	Maximum Pressure
q_{min}	Minimum Pressure
q _{ult}	The Ultimate Bearing Capacity
SHA	State Highway Administration
Т	Diameter of Reinforcement Bar

W	Weight of Gabion
WBS	Work Breakdown Structure
γ_c	Density of concrete
β	Angle of backfill slope
Ø ₂	Friction angle for the foundation soil
Ø1	Friction Angle for the backfill soil
∑v	Normal components
$\sum F_{d}$	Sum of the horizontal forces driving the wall to slide
$\sum F'_R$	Sum of the horizontal forces that withstand sliding
$\sum M_r$	Sum of the moments due to forces tend to withstand overturning the wall about the toe, basically the soil backfill and the concrete forces.
ΣMo	Sum of the moments that resulted from forces tend to overturn the wall
γ _g	Unit weight of a gabion wall
γ ₁	Unit weight of the backfill Soil
γ ₂	Unit weight for the foundation soil
X	Wall slope angle from horizontal
δ	Angle of friction between soil and wall