

Integer Programming Technique for Project Scheduling Considering Risk Management for Mega Projects

By:

Hamza Hasan Al-Safadi

Supervisor:

Prof. Dr. Rami A. Maher

This Thesis was Submitted in Partial Fulfillment of the Requirement for Master's Degree of Engineering Project Management

Faculty of Engineering

Isra University

January - 2018

To My Country, Jordan,

To My Father and Mother,

To My Teachers and Doctors,

To My Colleagues and Friends,

To All Who Cares ...

After The Name of ALLAH, I wish to express my deepest respect and sincere appreciation to my family for kindness and encouragement throughout my undergraduate and graduate study.

I wish to express my indebtedness and heartfelt gratitude and appreciation to my instructor Prof. Dr. Rami A. Maher, for his precious and continuous help.

A particular note of thanks goes to every member of the academic body of the university to their role in my personal and academic development.

Finally, I would like to express my deep thanks for all my dear friends for their sustain help.

Hamza Hasan AL-Safadi

January 2018

Authorization Form

Isra University

I, Hamza Hasan AL-Safadi, authorize Isra University to supply copies of my thesis to libraries or establishment of individuals on request, according to the Isra University regulations.

Signature:

.....

Date :

/ January / 2018

Committee Decision

This thesis titled, "Integer Programming Technique for Project Scheduling Considering Risk Management for Mega Projects" was successfully defined and approved in January 2018.

Examination Committee	Signature
Prof. Dr. Rami A. Maher (Supervisor)	
Dean of Faculty of Graduate Studies	
and Scientific Research	
Isra University	
Asst. Prof. Dr. Ibrahim A. Mohammed	
Department of Civil Engineering	
Faculty of Engineering	
Isra University	
Prof. Dr. Ghaleb J. Sweis	
Faculty of Graduate Studies	
The University of Jordan	

Table of Contents

Chapter One: Introduction in Mega Project Scheduling

1.1	Problem Statement and Formulation	1
1.2	Previous Research	4
1.3	Thesis Objectives	6
1.6	Thesis Structure	7
Chapter	Two: Literature Review	
2.1	Introduction	8

		-
2.2	Time Cost Tradeoff Problems	9
2.3	Modified Heuristic Methods for Scheduling	11
2.4	Linear and Integer Programming for Scheduling	14
2.5	Mega Project Features	21
2.6	Risk Management in Projects	25
2.7	Concluded Summary	26

Chapter Three: A Mega Projects Scheduling Methodology

3.1	Introduction	27
3.2	Milestone Planning	28
3.3	AOA and AON network	30
3.3.1	Features of AOA and AON Network	31
3.3.2	Proposed Algorithm for AOA Generation	32
3.4	Types of Floats and their Physical Meanings	36
3.5	Critical Path Computation Using Floyd's Algorithm	37
3.6	Moment Indices for Evaluating Resource Usage Efficiency	40
3.7	Proposed Heuristic Algorithm for Time Cost Tradeoff	42
3.8	Integer Programming Model for Time Cost Tradeoff	44
3.9	Summary of Mega Projects Scheduling Management	47

Chapter Four: Results of Scheduling A Mega Project

Introduction	49
Mega Project – Case Study	50
Generating AOA Network – Example	52
Heuristic Algorithm for Time Cost Tradeoff	56
Integer Programming for Time Cost Tradeoff	65
Risk Considerations	83
	Mega Project – Case Study Generating AOA Network – Example Heuristic Algorithm for Time Cost Tradeoff Integer Programming for Time Cost Tradeoff

Chapter Five: Conclusions and Recommendations

5.1	Conclusions	85
5.2	Recommendations	88
5.3	Future Works	88

List of Figures

Figure 3.1	Simple Milestone Plan	29
Figure 3.2	Flow Chart Illustrates AOA Network Generation	35
Figure 3.3	Flow Chart Illustrates Mega Projects Scheduling Methodology	48
Figure 4.1	Project Milestones	51
Figure 4.2	Available Project Completion Durations	56
Figure 4.3	Project Resource Histogram After Crashing	57
Figure 4.4	Project Resource Histogram After Minimizing RIC/day	58
Figure 4.5	Available Completions Durations for Milestone (Section 1-A)	60
Figure 4.6	Gantt Chart After Crashing Process	61
Figure 4.7	Milestone Resource Histogram After Crashing and Before Leveling	62
Figure 4.8	Milestone Resource Histogram After Crashing and Leveling	63
Figure 4.9	Monthly Resource Histogram	64
Figure 4.10	Quarterly Resource Histogram	64
Figure 4.11	Infeasible Solution for Milestone (Section 1-B) at 194 day	79

List of Tables

Table 4.1	Activity Information for Milestone (Section 1-A)	51
Table 4.2	Results of AOA Generation	52
Table 4.3	Summary of Available Crashed Durations	57
Table 4.4	The Iteration of Leveling Process for Project	59
Table 4.5	Available Crashing Duration with Increased Cost	60
Table 4.6	The Iteration of Leveling Process for Milestone	62
Table 4.7	Summary of Milestone After Scheduling	65
Table 4.8	Solution of Integer Programming Model	67
Table 4.9	Model Solution for Milestone (Section 1A)	76
Table 4.10	Model Solution for Milestone (Section 1B)	77
Table 4.11	Model Solution for Milestone (Section 1C)	78
Table 4.12	Model Solution for Milestone (Section 2)	79
Table 4.13	Model Solution for Milestone (Town Houese2)	80
Table 4.14	Model Solution for Milestone (Roadwork)	81
Table 4.15	Overall Project Scheduling Summary	82
Table 4.16	Increased Critical Activities Percentage Calculation	84
Table 4.17	Increased in Critical Activities Percentage	84

List of Abbreviations

MSIS	Multi Start Iterative Search
TCT	Time Cost Tradeoff
LP	Linear Programming
IP	Integer Programming
PMBOK	Project Management Book of Knowledge
APM	Association of Project Management
EL	Elite list
DTCT	Discrete Time Cost Tradeoff
AOA	Activity on Arrow
AON	Activity on Node
СРМ	Critical Path Method
PERT	Program Evaluation and Review Technique
PERT MSPSP	Program Evaluation and Review Technique Multi Skills Persons Scheduling
	-
MSPSP	Multi Skills Persons Scheduling
MSPSP MMRCPSP	Multi Skills Persons Scheduling Multi Resource Constrained Project Scheduling Problems
MSPSP MMRCPSP NPV	Multi Skills Persons Scheduling Multi Resource Constrained Project Scheduling Problems Net Present Value
MSPSP MMRCPSP NPV RPM	Multi Skills Persons Scheduling Multi Resource Constrained Project Scheduling Problems Net Present Value Repetitive Project Model
MSPSP MMRCPSP NPV RPM EST	Multi Skills Persons Scheduling Multi Resource Constrained Project Scheduling Problems Net Present Value Repetitive Project Model Early Start Time
MSPSP MMRCPSP NPV RPM EST EFT	Multi Skills Persons Scheduling Multi Resource Constrained Project Scheduling Problems Net Present Value Repetitive Project Model Early Start Time Early Finish Time
MSPSP MMRCPSP NPV RPM EST EFT LST	Multi Skills Persons Scheduling Multi Resource Constrained Project Scheduling Problems Net Present Value Repetitive Project Model Early Start Time Early Finish Time Late Start Time

Int.F	Interfering Float
Ind.F	Independent Float
V_m	Maximum Value of Used Resource
RR	Rate of Resource Usage
RIC	Resource Improvement Coefficient
C _c	Crashed Cost
C _n	Normal Cost
T _n	Normal Time
T _c	Crashed Time
C.S	Crashing Slope
ICAP	Increased Critical Activity Percentage

Abstract

Integer Programming Technique for Project Scheduling Considering Risk Management for Mega Project

By: Hamza Hasan Mohammad AL-Safadi

Projects can be classified into small, medium, large and mega. This could be mainly based on several factors such number of activities, the budget of the project or the completion time. This criterions of scaling may be changed from country to another. Increase one or more of these factors, the scale of project increased. The problem of mega project scheduling that is nine out of ten mega projects have cost overrun and benefits shortfall, that are resulted from inadequate scheduling plan.

This thesis develops a methodology for mega projects scheduling using heuristic approach and integer programming approach. This methodology includes three issues; time cost tradeoff, resource leveling and resource allocation. Heuristic approach uses activity on arrow network, therefore, this thesis introduces an algorithm to generate a unique activity on arrow network with minimum number of dummy activities. This developed heuristic algorithm finds the available times to complete the project and crashing cost associated to these times based on crash time for each activity and critical path calculation. A genetic algorithm is used to perform resource leveling and allocation using three indices to determine the optimum scheduling process. It also introduces integer programming model for time cost tradeoff problems using crashing time for each activity and logical relationships between activities.

As a case study, a mega construction project took place in the city of Aqaba, Jordan, is used to explore the application of the proposed methodology. For this case, the proposed methodology finds the available times to complete the project. The heuristic algorithm found that the project can be completed in six different durations and each duration specify amount of crashing for each milestone individually. Furthermore, the genetic algorithm adjust scheduling of these durations based on resource limitation in order to achieve best resource improvement coefficient. The increased cost for these durations was found by integer programming model to guarantee that the increased cost is optimal. Finally, risk consideration offers to project manager to choose one of these durations based on the percentage of increased critical activities.