Isra University Faculty of Engineering Engineering Project Management Graduate Studies

Sustainability and Feasibility Management for Residential Buildings Design in Jordan (Case Study)

Prepared by
Ahmad Abu-Khalaf

Supervised by DR. Taiseer Rawashdeh

Authorization

Date:

I, Ahmad Hussam Abu Khalaf, Authorized Al Isra University to supply copies of my thesis to libraries or establishment or individuals on request, according Al Isra University regulation.
Signature:

Committee Decision

This Thesis (Sustainability and Feasibility Management for Residential Building Design in Jordan) was Successfully Defended and Approved 0n		
Examination committee	Signature	
Dr. Taiseer Rawashdeh (Supervisor)		
Assoc. Prof. Architecture Engineering		
(Isra University)		
Dr. Akram Suleiman (member)		
Assit. prof. Civil Engineering		
(Isra University)		
Dr. Omar .Al-omarey (member)		
Assoc. prof . Architecture Engineering		
(Al Balqa Applied University)		

Acknowledgments

Special thanks to the Prof. Dr. Taiseer Rawashdeh, who had the credit on the researcher and the research since the beginning of this research until it became a thesis, for all the above I express them my appreciation and gratitude.

I would like to thank all professors in the Civil department in the College of Engineering who didn't save any effort to guide me.

I would like to thank Prof Dr. Ibrahim A.Mohammed Al.Hadithy who supported me through his mentoring and for I sincere thank him and appreciation his efforts.

I would like to extend my thanks and appreciation to the respected professors at the University of Isra and its administration, for their assistance to finalize this thesis.

I like to thank the honorable professors in the discussion committee for accepting to discuss of this thesis. I will grateful for their evaluation and correction.

Table of Contents

CONTENT	PAGE NUMBER		
Authorization	II		
Committee Decision	III		
Acknowledgments	IV		
Table of Contents	V		
Table of Figures	VII		
List of Tables	VIII		
List of Abbreviations	X		
Abstract	IX		
Chapter One			
Introduction			
1.1 Background	5		
1.2 Elements of Sustainable Design	10		
1.3 Research problem statement	17		
1.4 Research Objective	18		
1.5 Research Methodology	18		
1.6 Research structure	19		
Chapter Two			
Literature	Literature Review		
2. Case study introduction	20		
2.1 Sustainable energy	25		

2.1.1 Energy Consumptions	26		
2.1.2 Solar Power Generation	30		
2.1.3 Material Insolation	34		
2.1.4 Windows's shading	40		
2.1.5 Lighting energy	45		
Chapte	Chapter Three		
Energy Calculations			
3.1 Solar Power Generation	49		
3.2 Material Insolation	52		
3.3 Windows's shading	57		
3.4 Lighting energy	58		
3.5 Summery of energy	59		
calculation			
Chapte	er Four		
•			
reasionn	y Studies		
4.1 Solar Power Generation	60		
4.2 Material Insolation	63		
4.3 Windows type	65		
4.4 Lighting type	68		
4.5 Summery of feasibility studies	s 71		
Chapter Five			
Conclusion and Recommendations			
5.1 Conclusion	72		
5.1 Conclusion 5.2 Recommendation	72 73		
	·		

Table of Figures

Number	Figure Name	Page
1.1	Triangle of project management elements.	3
1.2	Abd al-Ladi House.	5
1.3	The court House	6
1.4	Al mulla House hall	8
1.5	The roman insula.	8
1.6	Elements of sustainable design according to USGBC.	10
1.7	AREE BUILDING.	13
1.8	AREE north side elevation.	14
1.9	SOS Housing entrance.	15
1.10		
2.1		
2.2		
2.3		
2.4	First floor plan.	23
2.5	2 nd and 3 rd floor plan	24
2.6	Circulation of the sun path around the building	30
2.7	Solar system components	31
2.8	2.8 Section of solar panel install roles.	
2.9		
2.10		
2.11		
2.12	-	
2.13	Installed PlyWood panel on wall	
2.14	Simulation of sun ray passing before and after	
	low E glass.	
2.15	Low E glass method of sun ray	42
2.16	2.16 Double Low E glass 3D section	

2.17	Touble Low E glass 3D section	44
3.1	Annual degree day map of 2016 (national	53
	energy)	
4.1	Cash flow for solar system A	61
4.2	Cash flow for solar system B	62
4.3	Cash flow for PVF	63
4.4	Cash flow for PlyWood	64
4.5	Cash flow for Double E glass	66
4.6	Cash flow for Triple E glass	67
4.7	Cash flow for Fluorescent Light	69
4.8	Cash flow for LED Light	70

List of Tables

Table Number	Table Name	Page
2.1	Roles codes of "A" categories buildings.	22
2.2	Building recess in meter.	22
2.3	Comparing between light types.	46
3.1	monthly produced power for the 325pw panel	49
	system	
3.2	monthly produced power for the 360pw panel	50
	system	
3.3	Annually expected production kWh for the	51
	325pw panel.	
3.4	Annually expected production kWh for the	52
	360pw panel.	
3.5	Current wall layers and their R values.	54
3.6	Wall layers and their R values with PVF.	55
3.7	Wall layers and their R values with Plywood.	56
3.8	Energy comparison of LED vs Fluorescent bulb	58
	to Incandesent bulb.	
4.1	Comparison between the solar energy systems	62
4.2	Comparison between the wall insulation	65
	materials.	
4.3	Comparison between the Windows's types	67
4.4	Comparison between the lights types	70

List of Abbreviations

Abbreviations	Meaning
AC	Alternating current
ICFL	Install Compact fluorescent light
DC	Direct current
HVAC	Heating, ventilation, Air Conditioning
KWH	Kilowatt-hour
PV	Photovoltaic Solar cell
TFPV	Thin-film photovoltaic cells
TFSC	Thin-film solar cells
USGBC	United states Green Building Concil
LEED	Leadership in Energy and Environment Design
CIB	Council Of Research And Innovation In Building
IRIS	Institute For Research And Innovation In Sustainability
BTU	British Thermal Unit
SEER	Seasonal Energy Efficient Ratio
SC	Sheading Cofficent

ABSTRACT

"Sustainability and Feasibility Management for

Residential Buildings in Jordan"

Supervised by: Dr. Taiseer Rawashdeh

Done by: Ahmad Abu Khalaf

The residence sector is one of the most developed sectors in Jordan but it's development growth is uncontrolled sustainably specially the energy sustainability and it's important to control it because Jordan is one of the high energy consuming countries in the middle east and it's increasing yearly. So in this research I did introduce a new technologies to use Like renewable energy source, wall insulation material, E-low windows, and lights type to achieve a lower and more efficient use of energy, and then to find if these technologies are feasible to use or not. And the studies by this research resulted that when using a solar energy system, PVF insulation material, Double E-low glass, and LED lighting it reduces the consumed energy more than 90%. So, its recommended to use these technologies to save energy and for cleaner environment.