

Multi-Project Scheduling with Limited Resources Management in Construction Industry

By:

Maher Farok Yousif Al-Lebban

Supervisor:

Prof. Dr. Rami A. Maher

This Thesis was Submitted in Partial Fulfillment of the Requirements for Master's Degree of Engineering Project Management

Isra University

Faculty of Engineering

August 2017

ص<u>ِ</u>ّلَةَ وَاللَّهُ الْعَظِيْمَر

سورة المجادلة / الإية: 11

I dedicate this work to my country, IRAQ

I dedicate this thesis to my father and mother,

My dear wife,

My son and daughter,

and to my brothers and sisters.

I dedicate this work, first and foremost, to all the people who contributed towards the success of this dissertation.

In addition, I would like to thank Hashemite Kingdom of Jordan and their people for their help and for hosting me throughout the duration of my research.

Acknowledgement

Thanks for God

I wish to express my deepest respect and sincere appreciation to my family for its kindness and encouragement throughout my undergraduate and graduate study.

I would like to express my sincere thanks and deep gratitude to my supervisor, **Prof. Dr. Rami A. Maher**, for his valuable guidance, constant support, and understanding throughout the present work, encouragement, suggestions, and utmost effort and interest that contributed to the successful completion of this work.

Also, special thanks are due to the staff of the Engineering Project Management Department and Civil Engineering Department at Al Isra University for their continual support throughout my research.

Lastly, I wish to express my thanks to all my colleagues for their support and for giving me the feeling of being a part of the team whenever we worked together.

Maher Farok Al-Lebban

August 2017

Authorization Form

I, Maher Farok Al-Lebban, authorized Isra University to supply copies of my thesis to libraries or establishments or individuals on request, according to the Isra University regulations.

Signature:

Date: / August / 2017

Committee Decision

This thesis titled, "Multi-Project Scheduling with Limited Resources

Management in Construction Industry" was successfully defended and

approved by:

Examination Committee

Signature

Prof. Dr. Rami A. Maher (Supervisor)

Dean of Faculty of Graduate Studies and Scientific Research Isra University

Asst. Prof. Dr. Ibrahim A. Mohammed

Department of Civil Engineering Faculty of Engineering Isra University

Prof. Dr. Ghaleb J. Sweis

Faculty of Graduate Studies The University of Jordan

iv

Table of Contents

Item	Title	Page
Dedication		
Acknowledgement		
Authorization Form		
Committee Decision		
Table of Contents		
List of Figures		
List of Tables List of Abbreviations		
List of Abstra		VX
ADSIF	Chapter One: Introduction in Multi-Project Scheduling	X
1.1	Introduction	1
1.1.1	The Concept of Project	2
1.1.1	The Concept of Project Management	3
1.1.2		3
	Project Scheduling	
1.1.4	Multi-Project with Limited Resources Management	3
1.2	Previous Studies	4
1.3	Motivations of Research	6
1.4	Hypothesis	8
1.5	Research Aims and Objectives	8
1.6	Thesis Structure	9
	Chapter Two: Literature Review	
2.1	Introduction	10
2.2	Essential Topics in Scheduling Management	12
2.2.1	The Scheduling Techniques	12
2.2.2	Multi-Project Scheduling with Limited Resources	13
2.2.3	Multi-Project Scheduling in Organization Environments	14
2.2.4	Traditional Scheduling Rules	17
2.3	Construction Industry	18
2.3.1	Multi-Project Scheduling in Construction Industry	18
2.3.2	Construction Industry in Jordan	19
2.3.3	Challenges of Construction Industry in India	20
2.3.4	Resource Constrained Multi-Project Scheduling for Construction	20
2.3.5	Projects in Vietnam Multi-Project Scheduling with Limited Resources in Japanese Housing Industry	21
2.3.6	Construction Industry in Dubai	22
2.4	Optimization Scheduling of Multi-Objective Construction Projects	22
2.4.1	Management and Controlling on Resource Rate	23

2.4.2	Resource Allocation	23	
2.4.3	Resource Leveling	24	
2.4.4	Resource Management Models	24	
2.5	Optimization Algorithms for a Multi-Mode Resource-Constrained	25	
	Multi-Project Scheduling Problem		
2.5.1	Primavera Software for Optimization of Resources in Multi-Project	26	
2.5.2	Two Heuristic Algorithms	26	
2.5.3	Multi-Criteria Heuristic Method and Genetic Algorithms	27	
2.6	Simulation Model for Resource Constrained Scheduling of Multi- Project	28	
2.7	Problem of Resource Dedication in Multi-Project Environments	29	
2.8	Manpower Resource Allocation in Multi-Project Organizations	30	
2.9	Requirements of Resource Utilization in Multi-Shift Work	30	
	Chapter Three: Methodology of Multi-Project Scheduling		
3.1	Introduction	33	
3.2	Concepts of Multi-Project Scheduling	33	
3.3	Mathematical Representation of Multi-Project Network	43	
3.4	Computation Parameters of Before Scheduling	44	
3.5	Optimal Scheduling Based on Genetic Algorithm	50	
	Chapter Four: Multi-Project Scheduling		
4.1	Introduction	53	
4.2	A Multi-Project Case Study	54	
4.3	Leveling and Allocation of the Multi-Project Case Study	56	
4.3.1	Projects Leveling Based on Resource Improvement Coefficient	58	
4.3.2	Projects Allocation Based on Maximum Resource Value	66	
4.4	Scheduling Using Multiple Criteria	68	
4.5	Scheduling of Multi-Project Using Re-Planning Alternative	76	
4.6	Risk Considerations	81	
	Chapter Five: Conclusions and Recommendations		
5.1	Conclusions	86	
5.2	Recommendations	88	
5.3	Future Works	90	

Title		Page
Figure 3.1	Flowchart for multi-project decision	36
Figure 3.2	Different configurations of merging projects	41
Figure 3.3	Resource histogram of a hypothetical project	47
Figure 3.4	Scheduling management cases	50
Figure 4.1	A daily resources leveling by using genetic algorithm	57
Figure 4.2	A monthly resources leveling by using genetic algorithm	57
Figure 4.3	A monthly resources leveling for the third merging configuration, $(W_{RIC} = 1, W_{RR} = 0, W_{MR} = 0, \text{ total float constrain})$	60
Figure 4.4	A monthly resources leveling for the fifth merging configuration, $(W_{RIC} = 1, W_{RR} = 0, W_{MR} = 0$, free float constrain)	63
Figure 4.5	A monthly resources leveling for the third merging configuration, $(W_{RIC} = 0, W_{RR} = 0, W_{MR} = 1$, free float constrain)	68
Figure 4.6	A monthly resources leveling for the seventh merging configuration, $(W_{RIC} = 0.5, W_{RR} = 0.5, W_{MR} = 0$, free float constrain)	73
Figure 4.7	A monthly resources leveling for the fifth merging configuration, $(W_{RIC} = 0.5, W_{RR} = 0, W_{MR} = 0.5, \text{ free float constrain})$	73
Figure 4.8	A monthly resources leveling for the third merging configuration, $(W_{RIC} = 0.5, W_{RR} = 0.25, W_{MR} = 0.25, \text{ free float constrain})$	74
Figure 4.9	A monthly resources leveling for single project case, ($W_{RIC} = 0.5$, $W_{RR} = 0, W_{MR} = 0.5$, free float constrain)	78

List of Figures

Title		Page
Table 4. 1	Results of use criterion of resources leveling, ($W_{RIC} = 1$)	59
Table 4.2	Activity predecessor before and after leveling of the third merging configuration, $(W_{RIC} = 1, W_{RR} = 0, W_{MR} = 0, \text{ total float constrain})$	60
Table 4.3	Activity predecessor before and after leveling of the fifth merging configuration, ($W_{RIC} = 1, W_{RR} = 0, W_{MR} = 0$, free float constrain)	64
Table 4.4	Results of use criterion of resources allocation, ($W_{MR} = 1$)	67
Table 4.5	Results of use criteria of resources leveling and resources allocation, ($W_{RIC} = 0.5$ and $W_{RR} = 0.5$)	70
Table 4.6	Results of use criteria of resources leveling and resources allocation, ($W_{RIC} = 0.5$ and $W_{MR} = 0.5$)	71
Table 4.7	Results of use criteria of resources leveling and resources allocation, $(W_{RIC} = 0.5, W_{RR} = 0.25, W_{MR} = 0.25)$	72
Table 4.8	Summary of the best results for the seven merged configurations for each weight of the criterion	75
Table 4.9	Re-planning all projects in scheduling a single multi-project	78
Table 4.10	Activity predecessor before and after leveling of re-planning projects in single project scheduling, ($W_{RIC} = 0.5, W_{RR} = 0, W_{MR} = 0.5$, free float constrain)	79
Table 4.11	Single multi-project scheduling with commitment to completed each project nearly at the same time as they are planned originally	80
Table 4.12	Activity movements considering risk criterion for merging configurations	81
Table 4.13	Activity movements considering risk criterion for single multi- project	83

List of Tables

Abbreviations	Means
A.L.	After Leveling
AOA	Activity on Arrow
AON	Activity on node
B.L.	Before Leveling
СРМ	Critical Path Method
СТР	Completion Time Project
EST	Earliest Start Time
ETV	Earliest Time Vector
F.F.	Free Float
GA	Genetic Algorithm
LCT	Latest Computing Time
MAXTWC	Maximum Total Work Content
MINLFT	Minimum Latest Finish Time
MR	Maximum Resource Value
PERT	Program Evaluation and Review Technique
PSA	Parallel Scheduling Algorithm
P.A.	Precedent Activity
RDP	Resource Dedication Problem
RIC	Resource Improvement Coefficient
RV	Resource Accumulating Vector
RR	Resources Rate
T.F.	Total Float
TV	Time Period Vector

List of Abbreviations

Abstract

Multi-Project Scheduling with Limited Resources Management in Construction Industry

By: Maher Farok Yousif Al-Lebban

Supervisor: Prof. Dr. Rami A. Maher

The scheduling of the multi-project consists of two or more projects, and the project is defined as a collection of activities that consume resources or a set of events. Therefore, the scheduling of a project is the assignment of a start and finish time for each activity so that the precedence and resource requirements are satisfied. This becomes a difficult problem in multi-project environments with limited resource.

Three choices for scheduling the projects are usually considered. The first is when the project is very large-scale. Therefore, the project should be divided into several large to medium-scale project so that each project can be easily scheduled. The second choice is when there are several small projects, which have nearly converged completion time, then the treating them separately may lead to lose in efforts, time and to inefficient management and improper control. Therefore, the solution is scheduling these projects in multi-project management environments. The third one is the dealing of several mediumscaled projects, which can be managed separately with easy scheduling and high flexibility.

In this thesis, the second choice is considered by taking five different construction projects in terms of their resources quantity and of the almost equal number of activities from a real construction company. However, their completion times are un-similar. Several approaches of scheduling these projects as a single multi-project will be presented and discussed. A genetic algorithm is used to develop a program that assists to solve the optimization scheduling process. Two different alternatives of scheduling will be proposed. The first alternative is merging the separate projects in one project by considered seven different merging configurations. The second alternative is re-planning activities of these projects in a single multi-project. For selecting the optimum trade-off between these scheduling alternatives, a multi-criterion is properly used.

At first place, the thesis provides a general approach to scheduling several projects in the multi-project environments, and shows how to choose the best alternative of scheduling. Considering the case study, a general finding is although one optimal scheduling alternative (optimal merging) is found; however, this may not be the best scheduling or best merging for another case study. Consequently, managers have to determine their own multi-criterion for the case at his or her hands.

The found optimal scheduling alternative (optimal merging) offers the best resource improvement coefficient *RIC*, maximum resource rate *RR*, and minimum resource maximal use *MR*, and the risk considerations. Furthermore, the alternative of seven merged configurations is compared to the alternative of re-planning the activities of all projects in a single multi-project. It is found that, besides the need of manager experiences and skills to reduction the number of total activities for an alternative of re-planning the activities of all projects in a single multi-project in a single multi-project. It is found that, besides the need of re-planning the activities of re-planning the activities of all projects in a single multi-project; the results are either similar or less optimal.