Sustainable Development and Rehabilitation of Green Buildings:

Case-Study of Al-Isra University in Jordan

By

Wael Ahmed

Supervised by

Dr. Taiseer Rawashdeh

Co-Supervisor

Prof. Dr. Khaled Tarawneh

This Thesis was submitted in Partial Fulfillment of the requirement for the Master’s Degree of Engineering Project Management (E.P.M)

Faculty of Engineering

Isra University

May-2017
AUTHORIZATION

I, Wael Ahmed Al-Hashmi, Authorized Al Isra University to supply copies of my thesis to libraries or establishment or individuals on request, according Al Isra University regulation.

Signature:

Date:
COMMITTEE DECISION
This Thesis (Sustainable Development and Rehabilitation of Green Buildings: Case-Study of Al-Isra University in Jordan) was Successfully Defended and Approved on ………………….

Examination committee **Signature**

Dr. Taiseer Al-Rawashdeh(Supervisor) …………………

…..

Assist. Prof. Architecture Engineering

(Isra University)

Dr. Khalid Al-Tarawneh(Co-Supervisor) .

……………………

Prof. Geology and Mineralogy

(Al Hussein Bin Talal University)

Dr. Akram Suleiman (member) …………………

Assoc. prof. Civil Engineering

(Al Isra University)

Dr. Omar .Al-Saraereh (member) …………………

Assoc. prof. Communication Skills

(Al Hashemite University)
DEDICATIONS

Thanks to Allah who is the creator of everything, and peace upon Prophet Mohammed the last of profits and messengers.

After a hard journey of research, efforts and diligence this research has been accomplished successfully, for this, I thank Allah for his blessings that he gifts us

To the one who raised me, lighted my way with her prayers, to my most precious person in this world; my beloved mother.

To who worked hard for me, and taught me the meaning of the struggle toward success, and helped me to be what I am; My Father may Allah expand his years.

We extend our appreciations and gratitude to all those who helped to accomplish this work and to overcome the difficulties I encountered, especially the professors in the post graduate education who gave me the guidance and valuable advices that helped me in completing this thesis.

ACKNOWLEDGMENTS
Special thanks to the professors Prof. Dr. Khaled Al-Tarawneh and Dr. Tayseer Al-Rawashdeh, who had the credit on the researcher and the research since the beginning of this research until it became a thesis, for all the above I express them my appreciation and gratitude.

I would like to thank all professors in the Civil department in the College of Engineering who have didn't save any effort to guide me.

I would like to thank Dr. Basim Hassan Jrew who supported me through his mentoring and for I sincere thank him and appreciation his efforts.

I would like to extend my thanks and appreciation to the respected professors at the University of Isra and its administration, for their assistance to finalize this thesis.

I like to thank the honorable professors in the discussion committee for accepting to discuss of this thesis. I will grateful for their evaluation and correction.
Table of Contents

<table>
<thead>
<tr>
<th>Content</th>
<th>Page number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedication</td>
<td>IV</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>V</td>
</tr>
<tr>
<td>Table of Content</td>
<td>VI</td>
</tr>
<tr>
<td>Table of figures</td>
<td>IX</td>
</tr>
<tr>
<td>List of Tables</td>
<td>XII</td>
</tr>
<tr>
<td>List of abbreviation</td>
<td>XIII</td>
</tr>
<tr>
<td>Abstract</td>
<td>XIV</td>
</tr>
</tbody>
</table>

Chapter One

Introduction

1.1 History of Green Building | 1
1.2 Research background | 2
1.3 Problem statement | 6
1.4 Research Objective | 8
1.5 Why is sustainable reconstruction necessary | 8
1.6 Principles of green design | 9
1.7 Sustainable Design Elements | 10
1.8 Research methodology | 12 |
1.9 Thesis structure | 13 |

Chapter Two

Design and Analyses of Electricity

2.1 Introduction | 15 |
2.2 Electrical definition | 17 |
2.3 Phases | 18 |
2.4 Lighting | 20 |
2.5 Photovoltaic System | 22 |
2.6 Type of solar cells | 27 |
2.7 Photovoltaic panels design | 33 |
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8 Electrical bill and the cost of the system</td>
<td>33</td>
</tr>
<tr>
<td>2.9 Design Considerations</td>
<td>34</td>
</tr>
<tr>
<td>2.10 System Details</td>
<td>35</td>
</tr>
<tr>
<td>2.11 Comparing economic alternative</td>
<td>49</td>
</tr>
</tbody>
</table>

Chapter Three
Design and Analysis for Cooling, Heating and Ventilation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 HVAC Equipment</td>
<td>51</td>
</tr>
<tr>
<td>3.2 Ventilation</td>
<td>52</td>
</tr>
<tr>
<td>3.3 Air Conditioning</td>
<td>53</td>
</tr>
<tr>
<td>3.4 Definitions</td>
<td>53</td>
</tr>
<tr>
<td>3.5 Geothermal Basic</td>
<td>54</td>
</tr>
<tr>
<td>3.6 Heat Pumps</td>
<td>56</td>
</tr>
<tr>
<td>3.7 Heating and Cooling In Geothermal System</td>
<td>57</td>
</tr>
<tr>
<td>3.8 Payback Period for a Geothermal System</td>
<td>58</td>
</tr>
<tr>
<td>3.9 DaveHealy-Aberdeen/met1D programming</td>
<td>60</td>
</tr>
</tbody>
</table>

Chapter Four
Water Conservation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Rain Water Harvesting</td>
<td>64</td>
</tr>
<tr>
<td>4.2 Calculate rainwater</td>
<td>69</td>
</tr>
<tr>
<td>4.3 Utilizing Gray Water</td>
<td>71</td>
</tr>
<tr>
<td>4.4 Low-Flow Fixtures</td>
<td>71</td>
</tr>
<tr>
<td>4.5 Water saving in the building of Al-Isra university</td>
<td>72</td>
</tr>
<tr>
<td>4.6 Water Surface Simulation</td>
<td>82</td>
</tr>
</tbody>
</table>
Chapter Five
Material

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Definitions of the Most Four Recognized Green Building LEED</td>
<td>85</td>
</tr>
<tr>
<td>5.2 The Conditionally Green Building Material</td>
<td>85</td>
</tr>
<tr>
<td>5.3 Different Between Traditional Material And Green Building Material</td>
<td>86</td>
</tr>
<tr>
<td>5.4 Insulation</td>
<td>87</td>
</tr>
<tr>
<td>5.5 Selection of sustainable alternatives for materials in the building of university</td>
<td>89</td>
</tr>
</tbody>
</table>

Chapter Six
Conclusions and Recommendation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Conclusion</td>
<td>99</td>
</tr>
<tr>
<td>6.2 Recommendation</td>
<td>100</td>
</tr>
<tr>
<td>References</td>
<td>101</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Sustainable design element</td>
<td>10</td>
</tr>
<tr>
<td>1.2</td>
<td>Research Framework</td>
<td>14</td>
</tr>
<tr>
<td>2.1</td>
<td>Types of current</td>
<td>18</td>
</tr>
<tr>
<td>2.2</td>
<td>Energy monitor</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>Off – Grid PV Systems</td>
<td>24</td>
</tr>
<tr>
<td>2.4</td>
<td>Grid-connected photovoltaic</td>
<td>25</td>
</tr>
<tr>
<td>2.5</td>
<td>Monocrystalline solar cells</td>
<td>27</td>
</tr>
<tr>
<td>2.6</td>
<td>Polycrystalline Silicon Solar Cells</td>
<td>29</td>
</tr>
<tr>
<td>2.7</td>
<td>Thin-film solar cells</td>
<td>31</td>
</tr>
<tr>
<td>2.8</td>
<td>Section of panel install on building roof</td>
<td>35</td>
</tr>
<tr>
<td>2.9</td>
<td>Al-Isra site plan</td>
<td>36</td>
</tr>
<tr>
<td>2.10</td>
<td>Panels Layout (panorama building)</td>
<td>38</td>
</tr>
<tr>
<td>2.11</td>
<td>Panels Layout (engineering Building)</td>
<td>39</td>
</tr>
<tr>
<td>2.12</td>
<td>Panels Layout (Library building)</td>
<td>41</td>
</tr>
<tr>
<td>2.13</td>
<td>Panels Layout (Literature Building)</td>
<td>42</td>
</tr>
<tr>
<td>2.14</td>
<td>Panels layout(Administrative Sciences Building)</td>
<td>44</td>
</tr>
<tr>
<td>2.15</td>
<td>Cash flow for one alternative</td>
<td>45</td>
</tr>
<tr>
<td>2.16</td>
<td>Cash flow for second alternative</td>
<td>47</td>
</tr>
<tr>
<td>2.17</td>
<td>Cash flow for third alternative</td>
<td>48</td>
</tr>
<tr>
<td>2.18</td>
<td>Cash flow for fourth alternative</td>
<td>48</td>
</tr>
<tr>
<td>2.19</td>
<td>Cash flow for fifth alternatives</td>
<td>49</td>
</tr>
<tr>
<td>3.1</td>
<td>Vertical Geothermal System</td>
<td>55</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>3.2</td>
<td>Geothermal Heating and Cooling Systems</td>
<td>58</td>
</tr>
<tr>
<td>3.3</td>
<td>Met1D program</td>
<td>60</td>
</tr>
<tr>
<td>3.4</td>
<td>Result of Met1D program</td>
<td>61</td>
</tr>
<tr>
<td>4.1</td>
<td>Rooftop rain water harvesting system source</td>
<td>65</td>
</tr>
<tr>
<td>4.2</td>
<td>Harvesting process</td>
<td>66</td>
</tr>
<tr>
<td>4.3</td>
<td>Installed in order to enhance the catch meant area</td>
<td>67</td>
</tr>
<tr>
<td>4.4</td>
<td>Tank of rain water harvesting</td>
<td>73</td>
</tr>
<tr>
<td>4.5</td>
<td>Water save technologic</td>
<td>75</td>
</tr>
<tr>
<td>4.6</td>
<td>Flush meters</td>
<td>76</td>
</tr>
<tr>
<td>4.7</td>
<td>Sanliv faucets aerators-A</td>
<td>77</td>
</tr>
<tr>
<td>4.8</td>
<td>Sanliv faucets aerators -B</td>
<td>77</td>
</tr>
<tr>
<td>4.9</td>
<td>Math Works model</td>
<td>78</td>
</tr>
<tr>
<td>4.10</td>
<td>Water Level Control-A</td>
<td>80</td>
</tr>
<tr>
<td>4.11</td>
<td>Water Level Control-B</td>
<td>80</td>
</tr>
<tr>
<td>4.12</td>
<td>Water Level Control-C</td>
<td>81</td>
</tr>
<tr>
<td>4.13</td>
<td>Water Level Control-D</td>
<td>81</td>
</tr>
<tr>
<td>4.14</td>
<td>Water Level Control-E</td>
<td>82</td>
</tr>
<tr>
<td>4.15</td>
<td>Water Surface Simulation-A</td>
<td>83</td>
</tr>
<tr>
<td>4.16</td>
<td>Water Surface Simulation-B</td>
<td>83</td>
</tr>
<tr>
<td>5.1</td>
<td>Wood Fibre Insulation</td>
<td>90</td>
</tr>
<tr>
<td>5.2</td>
<td>Autoclaved Aerated Concrete</td>
<td>93</td>
</tr>
<tr>
<td>5.3</td>
<td>Increasing green space in elevation</td>
<td>94</td>
</tr>
<tr>
<td>5.4</td>
<td>Green paint (Eco – Friendly paint)</td>
<td>95</td>
</tr>
<tr>
<td>5.5</td>
<td>Plastbau Metl</td>
<td>96</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Table Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Solar and Wind power plants in Jordan</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Types of solar cells</td>
<td>33</td>
</tr>
<tr>
<td>2.3</td>
<td>Electrical Bill in Jordan</td>
<td>34</td>
</tr>
<tr>
<td>2.4</td>
<td>System details of panorama building</td>
<td>37</td>
</tr>
<tr>
<td>2.5</td>
<td>System details of engineer building</td>
<td>39</td>
</tr>
<tr>
<td>2.6</td>
<td>System details of library building</td>
<td>40</td>
</tr>
<tr>
<td>2.7</td>
<td>System details of literature building</td>
<td>42</td>
</tr>
<tr>
<td>2.8</td>
<td>System details of administrative building</td>
<td>43</td>
</tr>
<tr>
<td>2.9</td>
<td>System details</td>
<td>44</td>
</tr>
<tr>
<td>2.10</td>
<td>Second economic of alternative</td>
<td>46</td>
</tr>
<tr>
<td>2.11</td>
<td>Comparison between the economical alternatives</td>
<td>50</td>
</tr>
<tr>
<td>3.1</td>
<td>Geothermal System</td>
<td>62</td>
</tr>
<tr>
<td>4.1</td>
<td>Rainwater Harvest</td>
<td>70</td>
</tr>
<tr>
<td>5.1</td>
<td>Cost for using Plastbau Metl</td>
<td>98</td>
</tr>
</tbody>
</table>
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating current</td>
</tr>
<tr>
<td>A-si</td>
<td>Amorphous silicon</td>
</tr>
<tr>
<td>CDTE</td>
<td>Cadmium telluride</td>
</tr>
<tr>
<td>CFL</td>
<td>Install Compact fluorescent light</td>
</tr>
<tr>
<td>CS/CLGS</td>
<td>Copper idiom gallium selenide</td>
</tr>
<tr>
<td>DC</td>
<td>Direct current</td>
</tr>
<tr>
<td>HVAC</td>
<td>Heating, ventilation, Air Conditioning</td>
</tr>
<tr>
<td>KWH</td>
<td>Kilowatt-hour</td>
</tr>
<tr>
<td>MoNI-SI</td>
<td>Monocrystalline Silicon Solar cells</td>
</tr>
<tr>
<td>OPC</td>
<td>Organic photovoltaic</td>
</tr>
<tr>
<td>PV</td>
<td>Photovoltaic Solar cell</td>
</tr>
<tr>
<td>RWH</td>
<td>Rainwater harvesting</td>
</tr>
<tr>
<td>Single-crystal-si</td>
<td>Single-crystalline silicon</td>
</tr>
<tr>
<td>TFPV</td>
<td>Thin-film photovoltaic cells</td>
</tr>
<tr>
<td>TFSC</td>
<td>Thin-film solar cells</td>
</tr>
<tr>
<td>VOCs</td>
<td>Volatile organic compounds</td>
</tr>
<tr>
<td>USGBC</td>
<td>United states Green Building</td>
</tr>
<tr>
<td>LEED</td>
<td>Leadership in Energy and Environment Design</td>
</tr>
<tr>
<td>CIB</td>
<td>Council Of Research And Innovation In Building</td>
</tr>
<tr>
<td>IRIS</td>
<td>Institute For Research And Innovation In Sustainability</td>
</tr>
<tr>
<td>TFPV</td>
<td>Thin-Film Photovoltaic Cells</td>
</tr>
<tr>
<td>GDP</td>
<td>Global Gross Domestic Product</td>
</tr>
</tbody>
</table>
ABSTRACT

Sustainable Development and Rehabilitation of Green Buildings: Case-Study of Al-Isra University in Jordan

By: Wael Ahmed Al-Hashmi

Supervised by: Dr. Taiseer Rawashdeh

Co-Supervisor: Prof. Dr. Khaled Tarawneh

The benefits of green building practices include a lower and more efficient use of energy, water and other resources, improved health and safety standards for the building residents, as well as reduced environmental impact, through less waste-production and pollution. Jordan limited and costly supply of natural resources, our future must be a sustainable. Jordan is one of the highest in the world depending on foreign energy sources, with 96% of the country oil and natural gas imports from neighboring middle eastern countries. This full reliance on foreign oil imports consumes a considerable amount of GDP in Jordan. The government of Jordan had established a renewable energy target equal to 7% of the energy mix by 2016 and 10% by 2020 as part of its 2007-2020 Energy Strategy. The plan calls for up to 1,000MW of wind, 600MW of solar and 50MW of waste-to-energy to be brought online by 2020. It lies in the hands of architects to reduce the effect of the construction because building construction contributes to around 41% in the carbon emissions and electricity use. The construction sector represents the major share of the energy consumption in Jordan consuming 45% of electricity. The objective of the study is to convert Al-Isra University to be a green building. To achieve this object surveying literature to know what has been done in this field, a comprehensive literature review has been done then investigating the energy levels consumption in
Al-Isra university, followed by design and analysis for electricity, design and analysis for cooling and heating, replacing traditional materials with green building materials, finally comparing the sustainable alternatives with economical engineering analysis for selecting the best alternatives. Results of the engineering economic analysis of the five alternatives showed the alternative is installing a pv system which will save 10,577,250JD over 25 years, so it is recommended to apply the results and recommendations of this study and working hardly to convert Al-Isra University to be a green building.