

Control and Management of Reinforcement Steel Leftovers (Case Study In Kingdom Of Bahrain Industry)

By

Mohamed Salem Mohamed Mutlaq Alruwaijeh

Supervised By

Prof. Dr. Rami A. Maher

A Thesis

Submitted to the College of Engineering/ Isra University as a Partial Fulfillment of the Requirement for the Degree of Master in Engineering Project Management

January 2017

COMMITTEE DECISION

This Thesis (Control and Management of Reinforcement Steel Leftovers Case Study In Kingdom Of Bahrain Industry) was successfully Defended and Approved on

Examination Committee	<u>Signature</u>
Prof Dr. Rami A. Maher (Supervisor) Dean of scientific research and higher education	
Dr Sofyan M. A. Hayajneh (Member)	
Prof. Dr. Mohammad Hiasat (Member)	

Authorization

I, Mohamed Salem Mohamed Mutlaq Alruwaijeh, authorized Isra University to supply copies of my thesis to libraries or establishment or individual on request, according to Isra University regulation.

Signature:

Date:

Dedication

The total thanks to my **god** who gives me all things, stand with me when no one was, and home " **Bahrain**" This total effort was not done without you, My **father**, who **stand by** me at every step in my life, and taught me that the best kind of knowledge to have is that which is help other, My **mother**, my only **truly** friend, who taught me that even the largest task can be accomplished if it is done step by step at a time.

Mohamed Salem Mohamed Mutlaq Aruwaijeh

Acknowledgements

I would like to express my appreciation and gratitude to my thesis supervisor, Prof Dr. Rami Maher, for his encouragement, guidance, and support in my research. He gave me valuable insight and motivation for this work, and I would also like to thank Prof. Dr. Mohammad Hiasat and Dr. Sofyan M. A. Hayajneh for them encourage, support, assistant and providing guidance through my research efforts. Thanks and gratitude are to the staff of Facility of Engineering – Isra University for the assistance and encouragement during my study.

I would like to thank deeply the British Reinforcement Concrete Company (BRC) for helping me in the data collection.

Finally, I would like to thank my Family for their never-ending support, and without their love and support the completion of this research effort, and my graduate degree would not have been possible. Mom without the ambitious drive you implanted in me to pursue a higher degree, I wouldn't have even started.

Table of content

AUTHORIZATION	Ι
DEDICATION	п
ACKNOWLEDGEMENTS	111
TABLE OF CONTENT	IV
LIST OF TABLES	VIII
TABLE OF FIGURE	X
LIST OF ABBREVIATIONS	XI
ABSTRACT	XII

CHAPTER ONE INTRODUCTION

1.1	PROBLEM STATEMENT AND RESEARCH MOTIVATION	1
1.2	PREVIOUS RESEARCH	2
1.3	THESIS OBJECTIVES	4
1.4	RESEARCH HYPOTHESES.	4

1.5 THESIS STRUCTURE

CHAPTER TWO LITERATURES REVIEW

2.1	INTRODUCTION	6
2.2	STEEL REINFORCEMENT CUTTING LEFTOVER	6
2.3	OVERVIEW OF METHODS FOR SOLVING 1DCSPUL	8

2.3.1	METHODS AND ALGORITHMS	8
2.3.2	SOLUTION METHODS IN PRACTICE	15
2.4	STEEL REINFORCEMENT CUTTING WASTE	16
2.4.1	WASTE DEFINITION	17
2.4.2	CATEGORIES OF WASTE	19
2.4.3	CAUSES OF WASTE IN CONSTRUCTION INDUSTRY	20
2.5	CONSTRUCTION MANAGEMENT AND WASTE MANAGEMENT DEFINITIONS	26
2.6	PROJECT CONTROLS DEFINITIONS AND THEIR IMPORTANCE	28
2.7	STEEL REINFORCEMENT WASTE AND CUTTING WASTE	30
2.8	WASTE MINIMIZATION OF STEEL REINFORCEMENT CUTTING	34
2.9	CONSTRUCTION'S WASTE AND THE ENVIRONMENTAL IMPACT	40
	CHAPTER THREE	
	MATHEMATICAL MODELING AND RESEARCH METHODOLOGY	
3.1	INTRODUCTION	44
3.2	DATA COLLECTION PROBLEM	45
3.3	REINFORCEMENT BAR INDUSTRY IN KINGDOM OF BAHRAIN	47
3.4	DATA ANALYSIS PROBLEM AND RESEARCH METHODOLOGY	50
3.5	MATHEMATICAL MODEL OF CUTTING STOCK PROBLEM	54
3.6	MODELING AND METHODS OF SOLUTION	56
3.7	LINEAR PROGRAMMING MODEL OF CUTTING STOCK PROBLEM	57
3.7.1	A REVIEW OF SOLUTION METHODS	60

3.8	PROPOSED MULTI TECHNIQUE MERGING ALGORITHM	61
3.9	LEFTOVER PROBLEM SOLUTION	70
2 1 0		

3.10 REINFORCEMENT STEEL COMPANIES IN KINGDOM OF BAHRAIN - INTERVIEW PROCEDURE 76

CHAPTER FOUR OPTIMAL SOLUTION FOR CUTTING PROCESS

4.1	INTRODUCTION	81
4.2	VALIDATION OF THE DEVELOPED SOFTWARE	82
4.2.1	ANALYSIS OF LINEARITY PROPERTY	86
4.2.2	ARRANGEMENT OF INPUT DATA	87
4.2.3	ANALYSIS OF USING TWO BARS FOR CUTTING	88
4.2.4	ANALYSIS OF ORDER DIVISION	89
4.3	REINFORCEMENT BAR CUTTING WITH LEFTOVERS	92
4.4	LEFTOVERS OF MERGING AND EXTENDING DEMAND ORDERS	95
4.5	PROJECT CASE STUDY	98
4.5.1	A CAR PARKING PROJECT FROM BRC COMPANY	99
4.5.2	A CONSTRUCTION PROJECT FROM HAJI HASSAN COMPANY	106
4.5.3	COMPARISON OF WASTE TRIMS AND TOTAL WASTE LENGTH	108
	CHAPTER FIVE	
	DESIGN OF CONTROL AND MANAGEMENT SYSTEM	
5.1	INTRODUCTION	114
5.2	RESULTS OF INTERVIEWS	114

5.3 AND I	CONTROL AND MANAGEMENT SYSTEM FOR REINFORCEMENT STEEL WAS LEFTOVERS	TE 123
5.4	VALIDATION OF THE PROPOSED CMS	128
5.4.1	ANALYZING THREE SEQUENTIAL ORDERS	129
5.4.2	COMPANIES' RESPONSES AND ANALYSIS	131
	CHAPTER SIX CONCLUSIONS, RECOMMENDATIONS AND FUTURE WORKS	
6.1	INTRODUCTION	135
6.2	CONCLUSIONS	135
6.2.1 CONC	RESULTS OF STEEL REINFORCEMENT CUTTING BASED ON LEFTOVER CEPT	135
6.2.2 PIECH	ACHIEVING GOOD CONTROL AND MANAGEMENT SYSTEM FOR LEFTOVI ES 137	ER
6.2.3	SOLUTIONS AND STRATEGIES TO CONTROL AND MANAGE LEFTOVERS	138
6.2.4	IMPORTANCE OF RESULTS FOR COMPANIES	139
6.3	RECOMMENDATIONS	141
6.4	FUTURE WORKS	142
REFE	RENCES	143
APPE	NDIX A	A1
APPE	NDIX B	B1
APPE	NDIX C	C1
APPE	NDIX E	E1

List of Tables

Table number	Table Title	Page number
2.1	International definitions of waste	20
2.2	Causes of material wastage	25
3.1	Cutting stock problem input	56
3.2	One length cutting pattern	61
3.3	List of discussed points	85
4.1	Arbitrary order for cutting	90
4.2	Cutting pattern of the considered order	90
4.3	Linearity property test of the developed optimal solution	93
4.4	Optimal solution with two bar lengths for cutting	95
4.5	a Cases of 10/5 Splitting mode	97
4.6	Order for leftover computation	98
4.7	Simulation results of the cutting order of table 4.6	99
4.8	8a Waste quantities	99
4.9	Results of merging two orders	101
4.10a	Order 1	102
4.10b	Order 2	102
4.10c	Order 3	102
4.11	Results of orders and their merging	102
4.12a	Case for extending order problem	103
4.12b	Extending order	104
4.13	Summary of the car parking project	105
4.14	Order of 12 mm bars	106
4.15	Comparing the optimal solution of the two arrangements	106
4.16	Optimal cutting pattern with ascending arrangement	107
4.17	Results of the cutting order of table 4.14	108
4.18	Waste quantities	108
4.19	The 16 mm diameter order for car parking project	109
4.20	Results of the cutting order of table 4.18	109
4.21	The 25 mm order for car parking project	110
4.22	Results of the cutting order of table 4.18	110
4.23a	Waste vector of the 25 mm order	110
4.23b	Leftover of 25 mm order	110
4.24	A 16 mm order of a construction project	111
4.25	Optimal solution of the two arrangements for the original order	112
4.26	Usable pieces of order	113
4.27	Waste trims using standard length only	115
4.28	Waste trims using multiple lengths	116
5.1	The BRC Company answers	118

5.2	The Haji Hassan Company answers	119
5.3	Results of three sequential orders	133
5.4	Interview responses	134, 135

Table of figure

Figure Number	Figure Title	Page Number
3.1	Reinforcement steel resizing process	51
3.2	Flowchart for multi-technique merged algorithm	72, 73
3.3	Optimum leftover flowchart	78, 79
4.1	A basic document to perform the cutting process of Car Parking Project	88
4.2	A basic document to perform the cutting process of Testing Example	105
4.3	A basic document to perform the cutting process of a certain project	115
5.1	a leftover knob in cutting machines	126

List of Abbreviations

Abbreviation	Meaning
1D	One-Dimensional
1DCSP	One Dimension Cutting Stock Problem
1DCSPUL	One Dimension Cutting Stock Problem With Usable Leftover
2D	Two-Dimensional
ALBA	Aluminum Of Bahrain
BAPCO	Bahrain Petroleum Company
BBS	Bending Schedules
BD	Bahrain Dinar,
BIM	Building Information Modelling
BRC	British Reinforcement Concrete Company
C&D	Construction And Demolition
C&DWM	Construction And Demolition Waste Management
C-CUT	Cutting Computer Program
CG	Column Generation
CMS	Control And Management System
COLA	Computerized Laying Out
CSP	Cutting Stock Problem
CSPUL	Cutting Stock Optimization Problem With Usable Leftovers
CUT	Cutting Computer Program
EAF	Arc Furnaces
ESI	Emirates Steel Industries
EU	European Union
FFD	First-Fit Decreasing
GA	Genetic Algorithm
GCC	Gulf Cooperation Council
GPIC	Gulf Petrochemical Industries
Hadeed	Saudi Iron And Steel Company
IP	Integer Programming
IPTS	Institute For Prospective Technological Studies
K.S.A.	Kingdome Of Saudi Arabia
LP	Linear Programming
MBS	Minimal Bin Slack
NEP	Number Of Efficient Cutting Patterns
OECD	Organization For Economic Cooperation And Development
Qasco	Qatar Steel Company
RFID	Radio Frequency Identification
SDM	System Dynamic Modeling
SHP	Sequential Heuristic Procedure
Tw	Trim Loss
UAE	Union Arab Emirates
UNEP	United Nations Environment Program
USD	United State Dollar
WRAP	Waste And Resource Action Program

ABSTRACT

Control and Management of Reinforcement Steel Leftovers (Case Study In Kingdom Of Bahrain Industry) By Mohamed salem Mohamed Mutlaq Alruwaijeh Supervisor Prof. Dr. Rami A. Maher

A cutting stock problem is one of the main and classical problems in different industries as well as in many aspects of our lives. The problem "Controlling and Managing of Reinforcement Steel Leftovers," is one of the important factors in construction industry. The aim of this study is to develop and test a system to minimize the waste, maximize the revenue and succeed in the optimal use of scarce resources.

Data will be collected from real projects from Kingdom of Bahrain biggest factories; meanwhile, the developed software will be used to reach the desired results. The first step is to analyze the validity of the developed software according to various aspects. Then several case studies were taken from national Companies. Furthermore, interview questions are set up for managers and employees in these companies to design a control and management system. During the interviews, the companies' team were shown the results of the developed software before they answer the questions. Finally, it is to develop a proper management system that saves the raw material.

It is found that the application of pre-determination of Reinforcement Steel Leftovers lengths will achieve significantly better results and thus reduce the amount of losses and achieve optimal use of resources. The most important result of this thesis is founding that not only achieving an optimum solution that leads to minimize losses, but to have an effective and flexible control and management system and an effective updated inventory system.