

ISRA UNIVERSITY

ENGINEERING FACULTY

Master Program in Engineering Project Management

Management and Evaluation of Asphalt Concrete Mixtures

(Case Study)

By

Ali Amer Kamal Al-Khafaji

Supervised By

Associate Prof. Dr. Majed Msallam

January 2017

COMMITTEE DECISION

This Thesis (Management and Evaluation of Asphalt Concrete Mixtures-Case Study) was successfully Defended and Approved on

Examination Committee

<u>Signature</u>

Dr. Majed Msallam (Supervisor) Ph.D., C.E. Associate Prof. of Civil Engineering

Dr. Basim Jrew (Member) Ph.D., Professor of Civil Engineering

Dr. Subhi Bazlamit (Member) Ph.D., P.E. Prof. of Civil Engineering

AUTHORIZATION FORM

I, **Ali Amer Kamal Al-Khafaji**, authorized Isra University to supply copies of my thesis to libraries or establishment or individual on request, according to Isra University regulation.

Signature:

Date:

DEDICATION

This Work is dedicated to my father **Consultant Engineer Amer Kamal Abdul Ameer Al-Khafaji** and my **Mother** for support me all the time in my life and their love.

My wife **Eng. Sarah** and our daughter **May** without whose support this thesis would not have been written.

My Sisters Zena, Luma, Farah and Shahad for their continuous support.

Loving Thanks to my Friends for their encouragement.

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my thesis committee members for not allowing me to go too far astray during my research efforts.

I would like to thank **Associate Prof. Dr. Majed Msallam** for being my thesis advisor and for his expertise and commitment to this research topic .

I would like to thank **Prof Dr. Basim Jrew** for his continuous guidance throughout the duration of this project and for giving me tremendous advice and help during all stages of this thesis and his great efforts are highly appreciated.

I would like to thank **Engineering Axis for Studies (EAS)** Especially **Eng. Eman Shehab** for her support all the time.

Finally, I would like to thank my Family for their never ending support, without their love and support the completion of this research effort and my graduate degree would not have been possible.

Last but not least, I thank God the Almighty for all the blessings.

Ali Amer Kamal Al-Khafaji

TABLE OF CONTENTS

SUBJECT	PAGE	
Committee Decision	Ι	
Authorization Form		
Dedication		
Acknowledgements		
Table of Content	V	
List of Table	VIII	
Table of Figure	X	
List of Abbreviations	XI	
Equation Table	XII	
Abstract	XIII	
CHAPTER ONE		
INTRODUCTION		
1.1 Back Ground	1	
1.2 Components Effect on Asphalt Mixture	2	
1.2.1 Steric Hardening Effect	4	
1.2.2 Moisture Effect	5	
1.2.3 Constructions Effect	5	
1.3 Research Methodology	6	
1.4 Research Objectives	7	
1.5 Thesis Organization	8	
CHAPTER TWO		
LITERATURE REVIEW		
2.1 Introduction	9	
2.2 Pavement Basics	9	
2.2.1 avenuent Dasies 2.2.1 Sub Grade		
2.2.1 Sub Stude		
2 2 3 Base Laver		
2.2.4 Surface		
2.3 Types of Pavement		
2 3 1 Flexible Pavement		
2.3.1.1 Types of Flexible Pavement		
2.3.1.1 Types of Lexible Pavement		
2.3.2 Rigid Pavement		
2.3.2.1 Types of Rigid Pavement		
2.3.3 Bituminous Materials	15	
2.3.4 Sources of Asphalt	16	
2.4 Description of Bituminous Binders	17	
2.4.1 Asphalt Cement		
2.4.2 Asphalt Cutback		
2.4.3 Emulsified Asphalt		
2.5 Aggregate.		
2.5.1 Aggregate Types		
2.5.2 Role of Absorption Aggregates of Asphalt		
2.6 Mixing of Asphalt and Aggregate		
2.7 Laboratory Tests to Identify Mixes		
2.8 ESAL Definition		
2.9 Distress Pavement		

SUBJECT	PAGE		
2.9.1 Probable Causes of Distress Pavement			
2.9.2 Identifying Distress Mixes			
2.9.3 Causes of Distress Mixes			
2.10 Previous Studies	37		
CHAPTER THREE ASPHALT CONCRETE MIXTURE ANALYSIS			
3.1 Introduction	44		
3.2 Aggregate Combined Grading	44		
3.3 Marshall Mix Design Samples	46		
3.4 Volumetric Analysis using Marshall Test Method	52		
3.4.1 Stability Test	54		
3.4.2 Flow Test	58		
3.4.3 Marshall Air Voids	61		
3.4.4 Specific Gravity	64		
a. Bulk Specific Gravity of the Compacted Asphalt Mixture (Gmb)	64		
b. Theoretical Maximum Specific Gravity of Bituminous Paving Mixtures (Gmm)	65		
3.4.5 Voids in Mineral Aggregate (VMA)			
3.5 Optimum Bitumen Content (OBC)			
3.6 Comparison of Various Mixtures and Additives	72		
CHAPTER FOUR CHARACTERISTIC OF IDEAL ASPHALT MIXTURE			
4.1 Introduction	74		
4.1.1 SPSS Software			
4.1.2 Dependent and Independent Variables	74		
4.1.2.1 The Dependent Variables			
4.1.2.2 The Independent Variables			
4.2 Variance Inflation Factor (VIF) Definision	75		
4.3 Wearing Layer Analysis Result	76		
4.3.1 VIF Result	76		
4.3.2 Wearing Layer Specific Gravity Result	77		
4.3.3 Wearing Layer Air Voids Result	80		
4.3.4 Wearing Layer Stability Result			
4.3.5 Wearing Layer Flow Test Result			
4.3.6 Wearing Layer VMA Result			
4.4 Binder Layer Analysis Result			
4.4.1 Binder Layer VIF Test Result			
4.4.2 Binder Layer Specific Gravity Result			
4.4.3 Binder Layer Stability Result			

SUBJECT	PAGE		
4.4.4 Binder Layer Flow Result	102		
4.4.5 Binder Layer VMA % Result	105		
4.4.6 Binder Layer Air Voids Result	107		
4.5 Management Final Results	108		
4.6 Management Flow Diagram	109		
4.7 Preliminary Economic Study			
4.8 Cost Analysis			
CHAPTER FIVE			
CONCLUSIONS AND RECOMMENDATIONS			
5.1 Conclusions	111		
5.2 Recommendations	116		
References			
Appendix A- Sample of Test Report			
Appendix B- Sample of Wearing Layer SPSS Input Data			
Appendix C- Sample of Binder Layer SPSS Input Data			
Appendix D- Binder Layer Marshall Test Result			
Appendix E- Wearing Layer Marshall Test Result			

LIST OF TABLE

Table Number	Table Title	Page Number
2.1	Cumulative Two-Way ESAL (\dot{w}_{18})	26
2.2	Ultimate Traffic Data (W ₁₈)	26
3.1	Hot Bins Components	45
3.2	The Obtained Combined Grading of The Aggregate	46
3.3	Wearing Layer Samples Contents	48
3.4	Binder Layer Samples Contents	50
3.5	The Stability Test Results for Both Wearing and Bearing Layer	56
3.6	Flow Test Results	59
3.7	Air Void Samples	62
3.8	Specific Gravity Result	66
3.9	VMA Result for Binder and Wearing Layer Samples	68
4.1	Dependent and Independent Variables	75
4.2	Status of Predictors	75
4.3	Normality and Co Linearity Diagnosis for The Types of Layers Using VIF	76
4.4	Multiple Linear Regression for Testing The Wearing Layer on (Specific Gravity)	77
4.5	The Differences % for Specific Gravity	79
4.6	Multiple Linear Regression for Testing The Impact of Types of Wearing Layer on (Air Voids %)	81
4.7	4.7 Air Voids Differences %	
4.8	Multiple Linear Regression for Testing The Impact of Types of Wearing Layer on (Stability %)	84
4.9	The Differences % for Stability	86
4.10	Multiple Linear Regression for Testing The Impact of Types of Wearing Layer on (Flow %)	88
4.11	The Differences % for Flow	89
4.12	Multiple Linear Regression for Testing The Impact of Types of Wearing Layer on (VMA %)	92
4.13	VMA Differences %	93
4.14	Normality and Co Linearity Diagnosis for The Types of Binder Layer Using VIF Test	95
4.15	Multiple Linear Regression for Testing The Impact of Types of Binder Contents on (Specific Gravity)	96
4.16	Specific Gravity Differences % 97	
4.17	Multiple Linear Regression for Testing The Impact of Types of Wearing Layer on (Stability %)	99
4.18	The Differences % for Stability	100
4.19	Multiple Linear Regression for Testing The Impact of Types of Wearing Layer on (Flow %)	102

Table Number	Table Title	Page Number
4.20	VMA Differences %	103
4.21	Multiple Linear Regression for Testing The Impact of Types of Wearing Layer on (VMA %)	105
4.22	VMA Differences %	106
4.23	The Adjustment Factor	108

TABLE OF FIGURE

Figure Number	Figure Title	Page Number
1.1	General View of Road Deterioration	1
1.2	General View of Good Road	2
2.1	Highway Functional Classification System	9
2.2	Pavement Basics	11
2.3	Typical cross section of a flexible pavement	12
2.4	Stress Distribution for Flexible Pavement Design.	12
2.5	Rigid Pavement Typical Section	14
3.1	Marshall Test Apparatus	53
3.2	Marshall Stability Curve	56
3.3	Marshall Flow Test Curve	59
3.4	Marshall Air Voids Curve	62
3.5	Marshall Specific Gravity Curve	65
3.6	VMA Curve	68
3.7	Stiffness Result Curve	72
4.1	Actual Specific Gravity Equation	78
4.2	Air Voids Result	82
4.3	Stability Result for Wearing Layer	85
4.4	Actual Flow Equation	89
4.5	Actual VMA % Equation	92
4.6	Management Flow Diagram	109

LIST OF ABBREVIATIONS

Abbreviation	Meaning	
AC %	Asphalt Cement Percentage	
AASHTO PP2-99	Mixture Conditioning of Hot Mix Asphalt (HMA)	
AASHTO T 166-13	Bulk Specific Gravity of Compacted Bituminous Mixtures Using Saturated Surface-Dry Specimens	
AASHTO T 209-12	Theoretical Maximum Specific Gravity and Density of Bituminous Paving Mixtures	
AASHTO T 245-14	Resistance to Plastic Flow of Bituminous Mixtures Using Marshall Apparatus	
ADT	Average Daily Traffic	
CA %	Course Aggregate Percentage	
CMS	Compaction Monitoring System	
EAS	Engineering Axis for Studies	
ESAL	Equivalent Single Axle Load	
FA %	Fine Aggregate Percentage	
Filler %	Filler Percentage	
Gmb	Bulk Specific Gravity of The Compacted Asphalt Mixture	
Gmm	Theoretical Maximum Specific Gravity of Bituminous Paving Mixtures	
HMA	Hot Mix Asphalt	
HMAC	Hot Mix Asphalt Cement	
LTA	Low Temperature Asphalt	
MS	Medium Setting	
MS-2	Mix Design Method for Asphalt Concrete and Other Hot-Mix Types	
OBC	Optimum Bitumen Content	
PCC	Portland Cement Concrete	
PWD	Public Works Department	
R	The Prediction Strength	
RAP	Reclaimed Asphalt Pavement	
RZ	Restricted Zone	
Spec. Grav.	Specific Gravity	
SPSS	Statistical Package for The Social Sciences Software	
SS	Slow Setting	
TMD	Theoretical Maximum Density	
TP&PD	Transportation Planning and Programming Division	
Va	Volume of Void	
VFA	Voids Filled with Asphalt	
VIF	Variance Inflation Factor	
VMA	Voids In Mineral Aggregate	
WMA	Warm-Mix Asphalt	
β	Beta Coefficient	

EQUATION TABLE

Equation Name		Equation Number	Page Number
Viscosity		2.1	23
ESAL Appli	cation Using AASHTO	2.2	25
W ₁₈		2.3	25
Optimum Bituminous Content (OBC)		3.1	70
Dependent and Independent Variables (Y _n)		4.1	75
Wearing Layer	Specific Gravity	4.2	78
	Air Voids %	4.3	81
	Stability %	4.4	85
	Flow %	4.5	88
	VMA %	4.6	92
Binder Layer	Specific Gravity	4.7	97
	Stability %	4.8	100
	Flow %	4.9	102
	VMA %	4.10	105
Adjustment Factor		4.11	108
Estimated Marshall Criteria		4.12	108

ABSTRACT

Management and Evaluation of Asphalt Concrete Mixture "Case Study"

By: Ali Amer Kamal Al-Khafaji

Supervisor: Associate Prof. Dr. Majed Msallam

The process of producing and designing good asphalt mixtures based on specifications and standards is not an easy or simple process. In the Hashemite Kingdom of Jordan, asphalt mixtures are designed using Marshall Design Method. Many tests are made to ensure the quality of the asphalt that is used to base highways like the Stability, Flow, Specific Gravity, Air Voids and Voids in the Mineral Aggregate (VMA).

In this study, 142 asphalt mixed samples were used with different amounts of the contents of the mixture (Asphalt Cement, Fine Aggregate, Course Aggregate and Filler) in which 71 samples of the Wearing layers and 71 samples of the Binder layer were already tested as actual data and validated the by SPSS Computer Software to determine the predicted models to estimate the actual data for management process.

The dependent variables are (Stability, Flow, Specific Gravity, Air Voids and Voids in the Mineral Aggregate (VMA). The independent variables are (Asphalt Cement, Fine Aggregate, Course Aggregate and Filler).

The Correlation Coefficient (R^2) of each dependent variables were determined.

The (R^2) for Specific Gravity is (59.8 %), for Air Voids are (76.2 %), for Stability is (74.9 %), for Flow is (90.3 %) and for VMA is (61.0 %) respectively.

A Flow Management Diagram was designed for Actual and Predicted results based on the adjustment factor for each dependent variable.

Key Words Flow, Specific Gravity, Air Voids, Stability, Voids in the Mineral Aggregate (VMA), Variance Inflation Factor (VIF), Hot Mix Asphalt Cement (HMAC), Asphalt Mixed, Marshall Test.