

Developing a New Microemulsion Using Nonionic Surfactants for Transdermal Delivery of Atenolol through Rat Skin

By

Manaf Mohammed Al-dabbagh

Supervisor

Dr. Jamal Alyoussef Alkrad, Prof. (Assist) of pharmaceutical technology

and biopharmacy.

This thesis was submitted in partial fulfillment of the requirements for the Master's degree in pharmaceutical sciences

Faculty of pharmacy

The Isra University

COMMITTEE DESCISION

- الدكتور جمال اليوسف الكراد
 - الدكتور احمد التلهوني
 - الدكتور حاتم الخطيب

Table of content

	Page
Table of content	
List of tables	IV
List of figures	V
List of used abbreviation	VI
Abstract	VII
1.Introduction	1
1.1 Atenolol	1
1.1.1 Structure	1
1.1.2 Pharmacokinetics and Metabolism	2
1.2 Skin anatomy	2
1.3 Transdermal drug delivery	3
1.3.1 Advantages of transdermal drug delivery	3
1.3.2 Limitations of transdermal delivery of the drug	4
1.3.3 Properties that influence transdermal delivery of the drug	4
1.4 Microemulsions	4
1.4.1 Advantages of Microemulsion Based Systems:	5
1.4.2 Disadvantages of Microemulsion Based Systems	5
1.4.3 Structure OF microemulsion	6

1.4.4 Components of Microemulsion System	
1.4.4.1 lipophilic phase	6
1.4.4.2 Aqueous phase	6
1.4.4.3 Surfactants	6
1.4.4.4 Co-surfactants	6
1.5 Franz-Diffusion Cell	7
1.6Transdermal of atenolol	8
1.7 Objectives	10
2. Materials, instruments and methods	11
2.1Materials	11
2.2 Instruments	11
2.3 Methods	11
2.3.1 Microemulsions preparation	11
2.3.2 Pseudo-ternary phase diagrams of microemulsion systems	13
2.3.3 Viscosity measurement	13
2.3.4 Droplet size measurement (Zeta-potential measurement)	13
2.3.5 Fourier Transform Infrared Spectroscopy (FTIR) measurements	14
2.3.6 Preparation of rat skin	14
2.3.7 In vitro Atenolol penetration study using Franz diffusion cell	14
2.3.8 In vivo transdermal Atenolol loaded microemulsion penetration study	14

2.3.9 HPLC Method	15
2.3.10Pharmacokinetic and statistical analysis	15
3. Results	17
3.1 HPLC method and calibration curve	17
3.2 Three phase diagrams	18
3.3 Rheological properties	19
3.4 Droplet size measurement	19
3.5 Studying of AT encapsulation using fourier transform infrared spectroscopy (FTIR)	21
3.6 Transdermal studying using Franz diffusion cell	23
3.7 In vivo transdermal of Atenolol loaded microemulsion penetration study	27
4. Discussion	29
5. Conclusion	31
6. References	32
7. Appendix	35

LIST OF TABLES

Table		Page
Table 1	Composition of formulated microemulsions	12
Table 2	The measured droplet size, polydisperisty index (PDI) and zata potential for different formulated microemulsions with Atenolol using Zeta-sizer.	20
Table 3	The summarized flux for different formulated microemulsions (MEs) through rat's skin using Franz diffusion cell.	23
Table 4	The elimination rate constant (K10), the area under curve (AUC), the absorption rate constant (K01), time of maximum absorption (tmax) and maximum concentration (Cmax) of ME1000m+0.1c and ME1000mg+s.	28

LIST OF FIGURS

Figures		Page
Figure 1	Chemical structure of atenolol	1
Figure 2	Skin anatomy	3
Figure 3	Figure 3 Franz diffusion cell	
Figure 4	gure 4 Non-ionic microemulsions (MEs)	
Figure 5	Calbriation curve of atenolol	
Figure 6	HPLC calbriation curve of atenolol	
Figure 7	The three phase diagrams for microemulsions (MEs) composed of IPM,	18
	water and a mixture of span 20:Tween 80 (2:3) without AT(A), without	
	AT(B).	
Figure 8	Rheogram of shear rate against viscosity (A) and shear rate against shear	19
	stress (B).	
Figure 9	FTIR of atenolol, microemelsion with atenolol (600mg+t) and	21
	microemulsion without atenolol.	
Figure 10	FTIR of each pure component used in producing the microemelsion,	22
	microemelsion with atenolol and microemelsion without atenolol.	
Figure 11	The realese profile of AT from differnet formulated MEs.	24
Figure 12	A,B,C,D,E,F and G:Flux and lag time estimation from AT	25
	penetrationprofile in different formulations through rat skin.	26
Figure 13	Chromatograms of atenolol using High pressure liquid chromatography	27
	(HPLC) for samples collected from blood (20 μ l injection volume, flow	
	rate of 0.5 ml/min, C18, 4.6*250 mm (Eclipse XDB-,5 Mm) column	
	system, mobile phase of water: ethanol with ratio of 70:30 and 0.4 ml	
	acetic acid and detected at wave length of 280 nm).	
Figure 14	plasma level time curve for transdermal bioavailability of atenolol in rats	27
	using microemulsion.	

LIST OF ABBREVIATION

ABBREVIATION	DEFINITION
AT	Atenolol
В	Beta
С	Citric acid
DMSO	Dimethyl Sulfoxide
Е	Ethanol
FTIR	fourier transform infrared spectroscopy
HPLC	High performance liquid chromatography
Hr	Hour(s)
IPM	Isopropyl Myristate
Jss	Steady State Flux
K10	Elimination rate constant
MEs	Microemulsion
O/W	Oil in Water
PDI	Poly dispersity Index
SC	stratum corneum
Span 20	Sorbitan mono-laurate
TDDS	Transdermal drug delivery system
Tween 80	Poly oxy ethylene sorbitan mono-laurate
Vol	Volume
W	Water
W/O	Water in Oil

Developing a new microemulsion using nonionic surfactants for transdermal delivery of Atenolol through rat skin

Abstract

In this study, seven loaded atenolol (AT) nonionic microemulsions (MEs) were develop and evaluated in vivo and in vitro for transdermal application of atenolol with aid of nonionic surfactants. The MEs were characterized for their droplets sizes, rheological properties. Also, the FTIR was used for evaluation of encapsulation of AT in MES. Furthermore, the permeation of AT loaded MEs was studied through rat's skin in vitro using Franz diffusion cell over 24 hrs as well as in vivo in rats. The results show that AT loaded MEs have colloidal characteristics regarding their droplet size, transparency and rheological characteristics. Moreover, the FTIR showed that AT was inside the dispersed phase. The highest flux value for AT loaded MEs through the skin using Franz diffusion cell was $263.53 \mu g/cm^2hr$ and the maximum plasma level of AT 4.17mg/ml was monitored after 7 hrs. تطوير مستحلبات دقيقة جديدة باستخدام العوامل الفعالة على السطح الغير الأيونية لتطبيق عبر الجلد للأتينولول من خلال الجلد الفئران

ملخص

في هذه الدراسة، تم تطوير سبعة مستحلبات دقيقة غير أيونية تحتوي على الأتينولول و تم تقيم إمتصاصها الجلدي في المختبر عبر جلد الجرذان. وقد تطابقت المستحضرات مع خصائص المستحضرات الغرويدية و ذلك لأحجام قطراتها، وخصائص اللزوجة و الشفافية. واستخدمت أيضا مطياف الأشعة تحت الحمراء لتقييم إندماج الأتينيلول في المستحلبات الدقيقة. وعصائص اللزوجة و و الشفافية. واستخدمت أيضا مطياف الأشعة تحت الحمراء لتقييم إندماج الأتينيلول في المستحلبات الدقيقة. واستخدمت أيضا مطياف الأشعة تحت الحمراء لتقييم إندماج الأتينيلول في المستحلبات الدقيقة. وعمائص اللزوجة و على ذلك، تم دراسة نفاذية الأتينلول من خلال الجلد الجرذان في المختبر باستخدام خلايا فرانز على مدى 24 ساعة، وكذلك في الجسم الحي في الفئران. وتظهر النتائج أن المستحلبات الدقيقة المحملة بالأتينلول لها خصائص غروية فيما ساعة، وكذلك في الجسم الحي في الفئران. وتظهر النتائج أن المستحلبات الدقيقة المحملة بالأتينلول لها خصائص غروية فيما ساعة، وكذلك في المحمر الحي أو من ذلك الجلد الجرذان في المختبر باستخدام خلايا فرانز على مدى 24 ساعة، وكذلك في الجسم الحي في الفئران. وتظهر النتائج أن المستحلبات الدقيقة المحملة بالأتينلول لها خصائص غروية فيما يتعلق بحجم قطراتها وشفافيتها وخصائصها اللزوجية. وعلاوة على ذلك، أظهرت أطياف الأشعة تحت الحمراء أن الأتينولول يتعلق بحم قطراتها وشفافيتها وخصائصها اللزوجية. وعلاوة على ذلك، أظهرت أطياف الأشعة تحت الحمراء أن الأتينولول على داخل المرحلة االطور الداخلي المبعثر. كانت أعلى قيمة تدفق للأتينلول من خلال الجلد باستخدام خلية فرانز 163.52 ساعات. كان داخل المرحلة الطور الداخلي المبعثر. كانت أعلى قيمة تدفق للأتينلول من خلال الجلد باستخدام خلية فرانز 163.52 μg/cm²hr